

T +31(0)35 - 603 81 81
 F +31(0)35 - 603 81 80
 M info@dis-sensors.nl
 W www.dis-sensors.com

page 1 of 16

CAN User Manual Acceleration Safety Sensor (Type D)

Original instructions

DIS Sensors bv

Oostergracht 40 3763 LZ Soest The Netherlands T +31(0)35 - 603 81 81 F +31(0)35 - 603 81 80 M info@dis-sensors.nl

www.dis-sensors.com

page 2 of 16

Table of Contents

1	Introduction	3
2	Quick Reference Guide	3
3	Safety, Installation, use & maintenance	4
4	Certification	5
5	Acceleration sensor explained	5
6	Safety function	5
7	Hardware setup	5
8	Signal processing	6
8.1	Sample rate:	6
8.2	Averaging:	6
8.3	Output filter:	6
8.4	Peak Supression Filter:	7
8.5	Pre-set/zero adjustment:	7
8.6	Acceleration element tolerance	8
8.7	Writing objects	8
8.8	Changing SRDO1 settings	8
9	Internal diagnostic tests	9
10	CAN Predefined Connection Object ID's	10
11	CAN Object Dictionary Entries (Communication Profile section)	11
12	CAN Object Dictionary Entries acceleration device(Application Specific section)	13
13	EDS files	15
14	Document revision control	15
A.	Appendixes1 Schematic overview acceleration measurement	16

List of Figures

Figure 1: Layout CAN bus connector	.5
Figure 2: Schematic overview acceleration measurement.	16

List of Tables

Table 1 Object fields for zero value (pre-set) CRC calculation	7
Table 2: Emergency code	9
Table 3: COB id's	10
Table 4: Communication profile section	11
Table 5 Application specific profile section for 360 degree device	13

DIS Sensors by

Oostergracht 40 3763 LZ Soest The Netherlands T +31(0)35 - 603 81 81 F +31(0)35 - 603 81 80 M info@dis-sensors.nl W www.dis-sensors.com

page 3 of 16

1 Introduction

This manual is only valid for sensor embedded firmware D-type (D-series acceleration sensors)

DIS CANopen safety acceleration sensor (D-type) family overview:

- Three housing types: 60x50mm plastic or aluminium (QG65), 70x60 stainless steel (QG76)
- One device: Acceleration 3-axis 3x 8000mg
- Three measurement methods:

Unsigned PEAK mode Signed PEAK mode (default) RMS mode

- Various CANopen and sensor-settings can be configured conform CANopen standard
- EDS files available
- CRC calculation tool available

2 Quick Reference Guide

- Hexadecimal figures will have suffix "h" in this manual
- CAN hardware interface: CAN2.0 A and B (complies to ISO11898-1&2)
- CAN communication profile: CANopen (complies to CiA301 version 4.2.0 & EN50325-4)
- Baud-rate: default 125 kbit/s (can be set to 10, 20, 50, 125, 250, 500, 1000 kbit/s)
- Node-ID: default 01h (possible range 01h 7Fh, so max. 127 nodes)
- Event time: default 50ms for TPDO1 and TPDO2 (range 10ms 32767ms)
- TPDO1 output: 180h + node-ID (181h for node-ID 1). Default 'off'
- TPDO2 output: 280h + node-ID (281h for node-ID 1). Default 'off'
- SRDO1 normal: 0FFh + 2*node-ID (101h for node-ID 1).
- SRDO1 invers: 100h + 2*node-ID (102h for node-ID 1).
- Byte-sequence on CAN-bus: little-endian (least significant byte first)
- Negative values: two's complement
- Two modes of operation: Event-mode (periodically autonomous messages) & Sync-mode
- Sync-mode: default disabled for TPDO1 and TPDO2
- Heartbeat: default off
- Vendor-ID DIS: 000001BDh (index 1018h sub index 01h)
- Firmware-version available via CAN Object index 1018h sub index 03h
- Serial number available via CAN Object index 1018h sub index 04h
- Pre-set/zero adjustment available via CAN Object index 300Fh sub index 01h
- Sample rate g-sensor-chip: 3200Hz.
- PEAK or RMS measurement during event-time TPDO1
- No input filter
- Output filter: adjustable high-pass filter 1st order. Controlled by CAN object 300Eh.
- Document data-types definition:
 - U8 Unsigned 8-bits number (0 255)
 - U16 Unsigned 16-bit number (0 65535)
 - U32 Unsigned 32-bit number (0 4294967295)
 - S8 Signed 8-bits number (-128 +127) (also known as 'Integer 8')
 - S16 Signed 16-bits number (-32768 +32767) (also known as 'Integer 16')
 - S32 Signed 32-bits number (-2147483648 +2147483647) (also known as 'Integer 32')

DIS Sensors bv Oostergracht 40 3763 LZ Soest

The Netherlands

T +31(0)35 - 603 81 81
 F +31(0)35 - 603 81 80
 M info@dis-sensors.nl
 W www.dis-sensors.com

page 4 of 16

3 Safety, Installation, use & maintenance

- By ignoring the safety instructions the manufacturer cannot be hold responsible for any damage or hazard.
- If any damage is noticed (M12 connector(s) and/or the enclosure) the device must be replaced by a new one in order to avoid hazard.
- Never move the sensor by pulling the cable.
- The device should only be used in situations covered by the datasheet.
- Only a SELV power supply should be used.
- Only the CANopen Safety interface according to EN50325-5 should be used.
- The family of sensors involved will have a variety of types due to different outputs, measuring ranges, enclosures and connection options. Datasheets are available for each specific type. Customer must select and read the datasheet for the product he is using.
- The Safety Related Fault Response Time (SRFRT) of this device is defined as the maximum time the sensor will report a non-safe situation to the outside world, after detecting an internal safety error. Actual value is specified in the datasheet
- Configuration of the device like changing Node-ID, COB-ID's and centring (sensor-offset) can only be done after a new CRC-code is generated separately and written to the device.
- The sensor should be mounted on a stable flat surface with all screws tightened.
- Use only double twisted double shielded CAN cables.
- The proof test interval for this sensor is 10 year. After this interval the sensor should be replaced or checked by comparing the output to a reference sensor, or checked / recalibrated by the manufacturer. This is to check for any non-detectable faults and/or degradation. This check / recalibration is not included in the price.
- The calculated MTTFd of the sensor is specified in the datasheet.
- This sensor does not require any maintenance between proof-test intervals.

The user of this safety device shall only use this device when:

- he is educated to design in / use functional safety sensors.
- he has taken knowledge of both the datasheet and the user manual.
- the zeroing / centering function is only performed in the right position by an authorized person.
- the redundancy compare parameters (both Redundancy Compare Time and Redundancy Compare Acceleration) are set by the customer according the application demands. The actual values used by the customer should fit the application involved. Before using this sensor and with the settings chosen the customer should evaluate risks in order to check whether the chosen settings satisfies his safety requirements. Manufacturer is not responsible for any damage caused by these customer-setting, even when the manufacturer defaults are used.
- the bandwidth settings are according to the application demand
- the device is used inside the specified environmental situation

The user of this safety device shall consider its output as 'defective' in the following situations:

- the device is not responding
- the device is not running in operational state
- the device is not running in the desired mode of operation. To be checked at installation/start-up.
- the device is sending an emergency message
- the device switches to NMT stop state
- the safeguard cycle time (SCT) exceeds the limit
- the safety related validation time (SRVT) exceeds the limit

T +31(0)35 - 603 81 81 F +31(0)35 - 603 81 80 M info@dis-sensors.nl W www.dis-sensors.com

page 5 of 16

4 Certification

EC Type examination by DEKRA EXAM GmbH Reg. ZP/C015/16 Certified level: SIL CL2 (claim limit 2 according to IEC 62061) & PLd (according to EN ISO 13849) Architecture: HFT=0 (according to IEC 62061) & CAT2 (according to EN ISO 13849)

5 Acceleration sensor explained

An accelerometer measures acceleration up to 3-axis. The device takes both the static component (100%) and the dynamic component (partial, depending on frequency and bandwidth-setting) into account. Optional the static component can be compensated for earth gravity. The device will periodically send a CAN message on the CAN-bus containing the acceleration value(s) in g.

6 Safety function

The safety function of the accelerometer sensor is to generate acceleration information based on values measured by a MEMS acceleration sensor chip. Based on this acceleration information the safety controller of the application can switch the machine to safe-mode in order to prevent for a dangerous situation.

Example: a windmill having a maximum vibration level. If the vibration level exceeds a certain critical value, the windmill can get damaged and/or the blades can break. To prevent for this an accelerometer can be mounted onto the windmill, measuring accelerations in the X, Y and/or Z-axis. The safety controller of the application should calculate vibration information out of these acceleration values, should monitor these vibration values and should switch the windmill to safe-mode as soon as the vibration level exceeds the limits for the application. This will significantly reduce the risk of a dangerous situation to happen.

7 Hardware setup

Connection:

Default:

2x 5-pins M12 connector (A-coding), female & male, loop-through. According to CiA303 V1.8.0

Pin 1:	Shield	4 ~ 7	7 1
Pin 2:	Vcc		
Pin 3:	Gnd & CAN GND		
Pin 4:	CAN H		
Pin 5:	CAN_L		2
		Male	Female

Figure 1: Layout CAN bus connector

Optional:

1x 5-pins M12 connector (A-coding) male only CAN-Cable with 5-pins M12 connector (A-coding) male CAN-Cable 5-wire Ω

<u>CAN-bus termination 120Ω</u> Default: no CAN-bus termination inside

Optional: CAN-bus termination inside

Tip: the last CAN-device in the chain should be terminated. For this purpose you can use the M12 male 5-pin termination resistor' (DIS article number 10217) or the M12 female 5-pin termination resistor' (DIS article number 10194).

T +31(0)35 - 603 81 81 F +31(0)35 - 603 81 80 M info@dis-sensors.nl W www.dis-sensors.com

page 6 of 16

8 Signal processing

The Safety sensor transmits SRDO messages. These message must be used to check the data and timing. In this SRDO message the acceleration information is available in normal and in invers format. Customer should compare these messages in order to check the sensor output is safe. It is also possible to send the data via the TPDO message according to CiA410 but in this case the sensor should be treated as a non-safety sensor. An output filter is available for removing the DC-component (static g-force). To compensate for mounting tolerances a pre-set/zero adjustment option is available. When pre-set/zero values are changed a CRC must be calculated off-line (CRC calculate tool available) and written to the sensor. The settings of the SRDO messages are also protected with a CRC code. When these are changed also new CRC code must be determined. When the sensor detects a failure an emergency message is generated and a safe state is activated. In the safe state no communication is possible (No SRDO, TPDO and Heartbeat).

8.1 Sample rate:

The internal G-sensor chip is sampled every 5ms. Each sample consist of 16 acceleration values for each axis. Resulting in sample rate of 3200 Hz. Each sample is used to calculate the PEAK or RMS value. After every 10ms new data is available for the CAN bus. The PEAK or RMS value is determent during the event time of TPD01. e.g. if Event time TPD01 is 10 ms \rightarrow a PEAK or RMS value over 32 samples is available.

8.2 Averaging:

The PEAK or RMS values are calculated during the TPDO1 cycle time. A longer TPDO cycle time results in a more stable output RMS signal (less noise). For PEAK applies that the highest value during this time is send .

8.3 Output filter:

The output of the sensor can be extra filtered by a 1st order high-pass filter. This filter removes the DC-component (static g-force). Default this output filter is disabled.

Via the CAN object dictionary (index 300Eh) this filter can be controlled, by setting the time-constant in ms, with a maximum of FFFFh = 65536ms.

The time constant is defined as the time in which the output changes to 70% of the step after a step response.

The -3dB frequency can be calculated by the formula f = 1 / (2*pi*time-constant). This -3dB frequency is independent of a change in TPDO1 event time and SRDO refresh time. But when the output filter time-constant is set < min[TPDO1 event time, the SRDO refresh time] the output filter is disabled.

page 7 of 16

8.4 Peak Suppression Filter:

Two Peak Suppression Filters (PSF) are implemented to reduce unwanted disturbances in the acceleration measurement caused by acceleration peaks.

Filter principle: An extreme sudden peak in the acceleration signal might indicate an unrealistic non-real peak. In this case the filter can make the sensor ignore this peak for a certain time

PSF in the redundancy compare chain (object 4007h):

The redundancy compare chain checks the difference between the two redundant MEMS chips. The filter helps to prevent for false safety alarms.

PSF in the inclination output chain (object 4008h):

The filter in the output chain makes the inclination output more stable and more realistic

PSF can be adjusted with 2 parameters:

- Angle (mg): This parameter sets the threshold for the peak. Only peaks above this threshold will be filtered. Setting this angle parameter to 0mg will disable the PSF
- Time (ms): After the peak suppression filter becomes active, it will hold the inclination signal for a certain period of time, set by this parameter.

Default values for Object 4007h: on, 0.3mg, 40ms Default values for Object 4008h: off, 0mg, 50ms

8.5 Pre-set/zero adjustment:

To eliminate mechanical offsets a pre-set/zero value can be added. This can be done with the pre-set/zero adjustment method, so introducing a permanent offset on the output of the sensor (center point = middle of measuring range). The current position will be regarded as the new pre-set/zero position. This can be done limited to 100.000x. (The value is written in EEPROM. The write actions for EEPROM is limited to 100.000x)

Via CAN object 300Fh (see sensor specific part) the centering/zeroing can be done for each axis separate or for both axis at the same time. Status information of the result is available from the same object 300Fh

Since the offset has direct influence on the acceleration output, the pre-set/zero value is protected with a CRC code. This CRC code must be set via object 63FFh. When the CRC code is written it must be validated with object 63FE sub id 0 writing data A5h. The polynomial of the CRC code is:

$$g(x) = x^{16} + x^{12} + x^5 + 1$$

Table 1 O)bject fields	for zero value	(pre-set) CRC	calculation
-----------	---------------	----------------	---------------	-------------

Order	Index	Sub index	Value	Size	Data
1	6200h	00h	Highest sub index supported	1 octet	a_7 to a_0
2		01h	Sub index number	1 octet	$b_7^1 to b_0^1$
3		0111	Safety acceleration X axis offset (pre-set) value	2 octets	c ₁₅ to c ₀
4		026	Sub index number	1 octet	$b_7^2 to b_0^2$
5		0211	Safety acceleration Y axis offset(pre-set) value	2 octets	d_{15} to d_0
		03h	Sub index number	1 octet	b ₇ ³ to b ₀ ³
			Safety acceleration Y axis offset(pre-set) value	2 octets	e_{15} to e_0

For CRC determination a PC tool is developed and can be found on the DIS web site <u>www.dis-sensors.com</u> A CRC code is also oblige for SRDO1 message for detailed information about generating see EN 50325-5. This CRC code can also be calculated with the same PC tool

DIS Sensors bv Oostergracht 40 3763 LZ Soest The Netherlands T +31(0)35 - 603 81 81 F +31(0)35 - 603 81 80 M info@dis-sensors.nl W www.dis-sensors.com

page 8 of 16

8.6 Acceleration element tolerance

The sensor consists of two accelerator elements. The acceleration values are compared and a safe state is set when the elements differ too much. To prevent for false alarms, a tolerance can be configured. The tolerance consists of allowing an g-force deviation during a certain time.

These values are adjustable via object 4006h sub- index 01h and 02h. The default values are 300d and 200d (580mg during 2000 ms). The actual values used by the customer should fit the application involved. Before using this sensor and with the settings chosen the customer should evaluate risks in order to check whether the chosen settings satisfies his safety requirements. Manufacturer is not responsible for any damage caused by these customer-setting, even when the manufacturer defaults are used.

Definitions for the Redundancy error:

'Redundancy Compare time' (user programmable, default 2000ms)

'Redundancy Compare acceleration' (user programmable, default 580mg)

8.7 Writing objects

When writing an object it can have a major influence on the output. To prevent unauthorized changes most write action can only be executed when the device is in pre-operational state. According to EN 50325-5

8.8 Changing SRDO1 settings

When changing an SRDO1 setting the sensor must be in pre-operating state. The direction 1301h sub id 01h must be disabled by writing 00h to object 1301h sub id 01h. When the SRDO setting is changed the CRC code must also be changed and activated. Finally the data must be stored in EEPROM

Example to change SRDO refresh time

	0		
Load object:	1301h sub id 01h with:	00h	disable SRDO1 communication.
Load object:	1301h sub id 02h with:	0064h	new SRDO refresh time.
Load object:	1301h sub id 01h with:	01h	enable transmit SRDO1 communication.
Load object:	13FFh sub id 01h with:	xxxxh	code from CRC calculation tool.
Load object:	13Feh sub id 00h with:	A5h	validate new CRC.
Load object:	1010h sub id 01h with:	"save"	or 65766173h write new SRDO1 refresh time, CRC and validation to
EEPROM.			

After a power reset and when the device is set to operational, the transmission time is equal to the desired time.

T +31(0)35 - 603 81 81 F +31(0)35 - 603 81 80 M info@dis-sensors.nl W www.dis-sensors.com

page 9 of 16

9 Internal diagnostic tests

To ensure safety the hard- and software of the safety sensor is continue checked. When a failure is detected, an emergency message is sent. After sending this message, the device goes to a safe state, in which no communication is possible (No SRDO, TPDO and Heartbeat). In this state, a NMT reset will not restart the sensor. Failure should be analyzed by reading out the emergency message. If the error can be fixed, give the sensor a new power cycle will restart the communication. If it is a 'sensor element error (redundancy error), you might consider to update 'redundancy compare time' and/or 'redundancy compare angle. If the error cannot be fixed, please contact your distributor.

Fable 2: Emergency code								
CAN Connecti	on Obje	ct ID: 080h+NODE_ID (emergency message)						
Byte number	Туре	Description						
01h and 00h	U16	Error-code:						
		0000h: no error						
		FF00h: CAN Open device specific error code						
02h	U8	Error-register:						
		00h: no error						
		01h: error register object 1001h						
04h and 03h	U8	Diagnose error CAN stack:						
		0000h: No error						
		0001h: Reset state						
		0002h: Can driver has to be reset						
		0002h: Safety cycle is ready						
		0004h. safety cycle is feady						
		0000h. Timeout by watchdog diagnose						
		0020h: Overvoltage						
		0040h. Unknown interrupt occurs						
		0040h. CSC stock has entered sofety stor						
		0100h. Unitialization organ						
		0100n: Initialization error						
		0200h: Can error						
		0400h: CAN NMT state error						
		0800h: Diagnose error						
		1000h: Safety cycle error						
		2000h: SRDO error						
		4001h: RAM error						
		8000h: Unknown error						
		-multiple errors can be indicated (bitwise OR-ed) simultaneously.						
0.71		-when an overvoltage occur the device stays permanent in safe state						
05h		reserved						
06h	0.01	Diagnose error						
	00n	Start CRC calculation ROM						
	0111 02h	Check register						
	0211 03h	Check addressing part unit 1						
	03h 04h	Check addressing part unit 7						
	05h	Check conditional jumps						
	06h	Check opcode						
	07h	Check CRC for SRDO's						
	09h	Check time stamp						
	0Ah	Wait for end of CRC calculation for CSC main						
	0Bh	Start CRC calculation ROM for application						
	0Ch	Wait for end of CRC calculation for application						
	0Dh	Start CRC calculation ROM for start-up monitor						
	0Eh	Wait for end of CRC calculation for start-up monitor						
	0Fh	Check RAM with GALPAT algorithm						

The receiving application should detect that no communication is possible and shall set the system to a safe state.

DIS Sensors bv

Oostergracht 40 3763 LZ Soest The Netherlands T +31(0)35 - 603 81 81 F +31(0)35 - 603 81 80 M info@dis-sensors.nl

www.dis-sensors.com

page 10 of 16

	10h	Check software interrupt
	11h	Check software interrupt was ok
	12h	Check undefined instruction interrupt
	19h	Check undefined instruction interrupt was ok
	7Fh	Idle state
07h		Application error
	00h	No application error
	01h	Unknown interrupt occurs
	02h	Safety RAM error
	04h	SRDO error
	08h	3V3 monitor error
	10h	Sensor element error
	20h	RAM error
	40h	EEPROM error
	80h	Watchdog or 5V under voltage error
		multiple errors can be indicated (bitwise OR-ed) simultaneously.
Sensor goes to s	safe state	(stop state) when an error is reported. Sensor must be power cycled to restart.

Example:

Receive COB-id 81h with data 00h FFh 01h 80h 00h 00h 0Eh 08h81 emergency message of node id 01h00h FFh-> FF00hCAN Open device specific error code01h->error register object 1001h80h 00h ->0080hCSC stack has entered safety stop00hreserved0EhWait for end of CRC calculation for start-up monitor08h.3V3 monitor error

10 CAN Predefined Connection Object ID's

Table 3: COB id's

Standard CAN Connection Object ID's (Most used)						
CAN-ID	Data	Description (client = CAN master, server = sensor)				
000h		NMT Network Management				
080h		Sync command to sensor				
080h + node-ID		Emergency message from sensor				
0FFh + 2 * node-ID		SRD01				
100h + 2 * node-ID		SRD01 invers				
180h + node-ID		TPDO1 message from sensor				
280h + node-ID		TPDO2 message from sensor				
580h + node-ID		SDO Download Request: Feedback from sensor (server to client)				
600h + node-ID		SDO Upload Request: Write to sensor (client to server)				
700h + node-ID	00h	heartbeat from sensor, boot-up mode				
	04h	heartbeat from sensor, stopped mode				
	05h heartbeat from sensor, operational mode					
	7Fh	heartbeat from sensor, pre-operational mode				

www.dis-sensors.com

page 11 of 16

11 CAN Object Dictionary Entries (Communication Profile section)

Table 4: Communication profile section

	Object Dictionary Communication Profile (Most used)							
Index	Sub index	Data	Туре	Read/ Write	Description	Pre- operational		
1000h	00h	00000000h	U32	R	No profile	No		
1001h	00h	e.g. 00h e.g. 81h	U8	R	Error Register - normal operation - device error	No		
1003h	00h		U32	R	Predefined error field	No		
1005h	00h		U32	R+W	Sync cob-id	No		
100Ch	00h		U16	R	Guard time	No		
100Dh	00h		U8	R	Life time factor	No		
1010h	00h	3	U8	R	Number of entrees	No		
	01h	"save" in ASCII 65766173h	U32	R+W	Save all parameters in EEPROM	Yes		
	02h	"save" in ASCII 65766173h	U32	R+W	Save communication parameters in EEPROM	Yes		
	03h	"save" in ASCII 65766173h	U32	R+W	Save application parameters in EEPROM	Yes		
1011h	00h	3	U8	R	Number of entrees	No		
	01h	"load" in ASCII 64616F6Ch	U32	R+W	Restore all parameters in EEPROM	Yes		
	02h	"load" in ASCII 64616F6C h	U32	R+W	Restore communication parameters in EEPROM	Yes		
	03h	"load" in ASCII 64616F6C h	U32	R+W	Restore application parameters in EEPROM	Yes		
1017h	00h	time in ms (hex) e.g. 07D0h e.g. 0000h	U16	R+W	Heartbeat time (ms) -2000ms -0ms (heartbeat switched off default)	No		
1018h	01h	4	1132	R	Vendor ID (000001BDb)	No		
10101	02h	e.g.04000412h e.g.04000414h e.g.04000418h	U32	R	Product Code 3axis acceleration ±2G range 3axis acceleration ±4G range 3axis acceleration ±8G range	No		
	03h		U32	R	Firmware version sensor (000x000yh) e.g. v2.1 = 00020001h	No		
	04h		U32	R	Serial number sensor (32 bit, unique) 00000000h up to FFFFFFFh	No		
1300h	00h	e.g. 00h e.g. 01h	U8	R+W	GFC parameter -invalid -valid	No		
1301h	00h	6	U8	R	Number of entrees	No		
	01h	e.g. 00h e.g. 01h e.g. 02h	U8	R+W	SRDO1 direction -Disabled -TX (default) -RX	Yes		
	02h	e.g. 50h	U16	R+W	Safety guard cycle time (SCT) - 80 ms default	Yes		
	03h	e.g. 14h	U8	R+W	safety-relevant validation time (SRVT) - 20 ms default	Yes		
	04h		U8	R+W	Transmission type default 254 (FEh)	Yes		
	05h		U32	R+W	COB ID1 0xFFh + Node ID *2 (default)	Yes		
	06h		U32	R+W	COB_ID2 0x100h + Node ID *2 (default)	Yes		

DIS Sensors bv Oostergracht 40 3763 LZ Soest

The Netherlands

T +31(0)35 - 603 81 81 F +31(0)35 - 603 81 80

M info@dis-sensors.nlW www.dis-sensors.com

page 12 of 16

12011	0.01	12	TIO	р	Number of antions	N.
1381n	00h	12	U8 U22	K D	Number of entrees	No
	01h		U32 U22	K D	Mapping object SRDO1 62100108n	No No
	02h		U32 U22	K D	Mapping object SRDO 1 invers 62110108n	INO Na
	0.41		U32 U22	K D	Mapping object SRDO 1 62100208n	INO Na
	041		U32 U22	K D	Mapping object SRDO 1 invers 62110208n	INO Na
	05h		U32	K D	Mapping object SRDO 1 62200108n	NO No
	000		U32	K D	Mapping object SRDO 1 invers 62210108n	NO No
	0/h		U32	K D	Mapping object SRDO 1 62200208n	NO
	08h		U32	K D	Mapping object SRDO 1 invers 62210208h	NO
	09h		U32	R	Mapping object SRDO 1 62300108h	No
	0Ah		032	R	Mapping object SRDO 1 invers 62310108h	No
	OBh		032	R	Mapping object SRDO 1 62300208h	No
10551	OCh		U32	R	Mapping object SRDO 1 invers 62310208h	No
13FEh	00h	4.51	08	R+W	SRDO configuration	Yes
		e.g. A5h			SRDO configuration signature valid	
1000	0.01	Other value	I IO	D	SRDO configuration signature not valid	N
13FFh	00h	4	U8	R	Number of entrees	No
1 40.01	01h		U16	R+W	CRC of SRDOI	Yes
1400h	00h	2	08	R	Number of entrees Receive PDO I	No
	01h		U32	R+W	COB_ID used by PDO 0xC0000201 (default)	No
	02h		U8	R+W	Transmission type FFh default	No
1401h	00h	2	U8	R	Number of entrees Receive PDO 2	No
	01h		U32	R+W	COB_ID used by PDO 0xC0000201 (default)	No
	02h		U8	R+W	Transmission type FFh default	No
1600h	00h	8	U8	R	Number of entrees Receive PDO mapping	No
	01h- 08h		U32	R	Disabled 0000000h	No
1601h	00h	8	U8	R	Number of entrees Receive PDO mapping	No
	01h-	-	U32	R	Disabled 0000000h	No
	08h					
1800h	00h	5	U8	R	Number of entrees	No
	01h	-	U32	R+W	TPDO1 event-mode	No
	-	e.g. 40000181h			-enable	
		e.g. C0000181h			-disable (default TPDO1)	
	02h		U8	R+W	TPDO1 sync-mode	No
		e.g. 01h			-enable	
		e.g. FFh			- disable (default)	
	05h	time in ms	U16	R+W	TPDO1 event-time	No
		e.g. 0032h			-50ms (default)	
		e.g. 0000h			-0ms (disable TPDO1)	
1801h	00h	5		U8	Number of entrees	No
	01h		U32	R+W	TPDO2 event-mode	No
		e.g. 40000281h			-enable	
		e.g. C0000281h			-disable (default TPDO2)	
	02h		U8	R+W	TPDO2 sync-mode	No
		e.g. 01h			-enable	
		e.g. FFh			-disable (default)	
	05h	time in ms (hex)	U16	R+W	TPDO2 event-time	No
		e.g. 0032h			-50ms (default)	
		e.g. 0000h			-0ms (disable TPDO2)	

T +31(0)35 - 603 81 81 F +31(0)35 - 603 81 80 M info@dis-sensors.nl

W www.dis-sensors.com

page 13 of 16

12 CAN Object Dictionary Entries acceleration device (Application Specific section)

Table 5 Application specific profile section for an accelleration device

Application specific parameters							
Index	Sub	Data	Туре	Read/ Write	Description	Pre-	
20001		1	110	WIIIC D	N	N	
3000h	00h	1	08	R D.W	Number of entrees	No	
	OIh	01h up to 7Fh	U8	R+W	Node-ID 01h (default) up to 7Fh (when Node Id >3Fh non-standard COB-ID of SRDO1 must be used) (changes are being affected after a power cycle only)	Yes	
3001h	00h	1	U8	R	Number of entrees	No	
	01h	e.g.06 e.g.05 e.g.04 e.g.03 e.g.02 e.g.01 e.g.00	U8	R+W	Baud rate (kbit/s) -50 -100 -125 (default) -250 -500 -800 -1000 (changes are being affected after a power cycle only)	Yes	
3002h	00	1	U8	R	Number of entrees	No	
	01	e.g. 01h e.g.02h e.g. 03h	U8	R/W	Acceleration type RMS mode Signed PEAK mode (default) Unsigned PEAK mode	Yes	
300Eh	00h	1	U8	R	Number of entrees	No	
	01h	Time in ms e.g. 0000h e.g. 0064h	U16	R+W	Output filter (1 st order high pass): -disabled (default) -enabled, 100ms (f=1.59Hz)	Yes	
300Fh	00h	1	U8	R	Number of entrees	No	
	01h	e.g. Write 01h e.g. Write02h e.g. Write 04h e.g. Write 07h e.g. Read 00h e.g. Read FEh e.g. Read FCh	S8	R+W	Pre-set adjustment acceleration. -Write: start zero X acceleration -Write: start zero Y acceleration -Write: start zero Z acceleration -Write: start zero XYZ acceleration -zero successful, -zero X unsuccessful -zero X and Y unsuccessful	Yes	
4006h	00h	2	U8	R	Number of entrees	No	
	01h	e.g. 300 e.g.30	U16	R+W	Redundancy Compare Acceleration Maximal acceleration deviation between two elements -580 mg (default) -58 mg	Yes	
	02h	e.g. 20 e.g. 200	U16	R+W	Redundancy Compare Time Time within maximal deviation is allowed.[10ms] -200 ms. -2000 ms (default)	Yes	

DIS Sensors bv Oostergracht 40

3763 LZ Soest

The Netherlands

T +31(0)35 - 603 81 81 F +31(0)35 - 603 81 80

M info@dis-sensors.nl

www.dis-sensors.com

page 14 of 16

4007h	00h	1	U8	R	Number of entrees	No
10071	01h	-	U16	R+W	Peak suppression redundancy angle	Yes
	0111	e.g. 0	010	11. 11	-disabled	
		e.g. 300			-0.3mg (default)	
	02h		U16	R+W	Name=Peak suppression redundancy time [10ms].	Yes
	-	e.g. 4			-40 ms (default)	
		e.g. 40			-400 ms	
4008h	00h	1	U8	R	Number of entrees	
	01h		U16	R+W	Peak suppression output angle	
		e.g. 0			-Disabled (default)	
		e.g. 900			-0.9mg	
	02h		U16	R+W	Name=Peak suppression output time [10ms].	
		e.g. 5			-50 ms (default)	
		e.g. 50			-500 ms	
6000h	00h	2	U8	R	Resolution in 0,01 degree	No
6010h	00h		S16	R	X acceleration	No
6011h	00h		U8	R+W	Operating parameter X acceleration	Yes
		e.g. $Bit0 = 0$			-Acceleration normal	
		e.g. $Bit0 = 1$			-Acceleration invers	
		e.g. $Bit1 = 0$			-Pre-set enable	
		e.g. Bit1 = 1			-Pre-set disable	
		Other bits			-No function	
6020h	00h		S16	R	Y acceleration	No
6021h	00h		U8	R+W	Operating parameter Y acceleration	Yes
		e.g. $Bit0 = 0$			-Acceleration normal	
		e.g. $Bit0 = 1$			-Acceleration invers	
		e.g. $Bit1 = 0$			-Pre-set enable	
		e.g. $Dit1 = 1$			-Pre-set disable	
6020h	00h	Other bits	S16	р		No
6031h	00h		119		Characteria parameter Z acceleration	Vas
005111	0011	$e \sigma Bit0 = 0$	00	K⊤ W	-Acceleration normal	105
		e.g. $Bit0 = 1$			-Acceleration invers	
		e.g. Bit1 = 0			-Pre-set enable	
		e.g. Bit $1 = 1$			-Pre-set disable	
		Other bits			-No function	
6200h	00h	2	U8	R	Number of entrees	No
	01h		S16	R+W	Pre-set value X Acceleration	Yes
	02h		S16	R+W	Pre-set value Y Acceleration	Yes
	03h		S16	R+W	Pre-set value Z Acceleration	
6210h	00h	2	U8	R	Number of entrees	No
	01h		U8	R	Bit 0-7 of normal SRDO X Acceleration	No
	02h		U8	R	Bit 8-15 of normal SRDO X Acceleration	No
6211h	00h	2	U8	R	Number of entrees	No
	01		U8	R	Bit 0-7 of invers SRDO X Acceleration	No
	02h		U8	R	Bit 8-15 of invers SRDO X Acceleration	No
6220h	00h	2	U8	R	Number of entrees	No
	01h		U8	R	Bit 0-7 of normal SRDO Y Acceleration	No
	02h		U8	R	Bit 8-15 of normal SRDO Y Acceleration	No
6221h	00h	2	U8	R	Number of entrees	No
	01		U8	R	Bit 0-/ of invers SRDO Y Acceleration	No
(2001	02h		U8	R	Bit 8-15 of invers SRDO Y Acceleration	No
6230h	00h	2	U8	K	Number of entrees	No
	01h		U8	K	Bit 0-/ of normal SRDU Z Acceleration	No
(0211	02h		U8	K	Bit 8-15 OF normal SKDU Z Acceleration	INO Na
0231h	000	2	U8 110	K	INUMED IN UNDER OF ENTREES	INO No
	025			K D	Dit 0-7 Of Invers SKDO Z Acceleration	No
L	02n	1	Uð	ĸ	DIL 0-13 OF HIVERS SKDU Z ACCEleration	INO

DIS Sensors by Oostergracht 40 3763 LZ Soest The Netherlands T +31(0)35 - 603 81 81 F +31(0)35 - 603 81 80 M info@dis-sensors.nl

www.dis-sensors.com

page 15 of 16

63FFh	00h		118	P ⊥W	Pre set configuration field	Ves	
UJITEII	0011	a g A 5h	00		Signatura valid	105	
		e.g. AJII			-Signature valu		
		e.g. 00h			-Signature not valid		
63FFh	00	1	U8	R	Number of entrees	No	
	01h		U16	R+W	Pre-set value signature	Yes	
To store application specific parameters permanent into the EEPROM of the sensor CAN Object 1010h							
should be used, otherwise the changes will be lost after a power cycle.							
All not-specified indices and/or sub-indices are reserved for factory use only.							

13 EDS files

The "Electronic Data Sheet" (EDS file) is a file format that describes the communication behavior and the object dictionary entries of a device. In fact it's a template. This allows tools such as CAN configuration tools to handle the device properly. The file format is described in CiA306 V1.3.0

The EDS-file contains all possible settings and functions for the device by describing the CAN object dictionary for the device to be set by CAN commands.

The EDS-file does not contain a customer specific configuration description (the values of the object dictionary, like i.e. the chosen baud rate, TPDO1 event time, Node ID etc.). For this purpose the customer can generate a so called DCF-file (Device Configuration File) with all customer specific settings out of the EDS-file. The DCF file is in fact the incarnation of the EDS-file.

After loading the DCF-file into the device you have to store the settings into EEPROM by index 1010h sub index 01h to store permanently, see "CAN Object Dictionary Entries".

The EDS-files available for sensors with embedded firmware version D-type described in this document should have a version D-type also.

The next EDS-file is available at www.dis-sensors.com under 'downloads':

- QG_Dtype_3_axis_2g_v*.*
- QG_Dtype_3_axis_4g_v*.*
- QG_Dtype_3_axis_8g_v*.*

14 Document revision control

V1.0 first release

- V1.1 Add commend after review JK
- V1.2 Safety information added (MvA) Schematic overview adjusted (RMo)
- V1.3 EDS name split for different g type
- V1.4 Add text original instructions in document
- V1.5 Change mapping object 1381h for 1 axis and 2 axis according to profile (RMo)
 - Change description of object 1011
- V1.6 20200831 Insert Peak suppression filter for MEMS elements and for acceleration output (MvA)

CAN User Manual Acceleration Safety Sensor (Type D) v1.6 **DIS Sensors bv**

Oostergracht 40 3763 LZ Soest The Netherlands T +31(0)35 - 603 81 81
F +31(0)35 - 603 81 80
M info@dis-sensors.nl
W www.dis-sensors.com

page 16 of 16

A. Appendixes1 Schematic overview acceleration measurement

Figure 2: Schematic overview acceleration measurement.

