

USER MANUAL

QG65D CANopen Dynamic Inclinometer (Type H)

V2.3, Mar-22

DIS Sensors by

Oostergracht 40

3763 LZ Soest | The Netherlands

T +31 (0)35 - 603 81 81

M info@dis-sensors.com

W www.dis-sensors.com

Table of Contents

Ι.	Saret	y information	3
	1.1.	Intended use	3
	1.2.	Incorrect use	3
	1.3.	Sensor defective	
2	_	It this manual	
۷.	2.1.	Intended use	
	2.2.	Symbols used in the text	
		,	
	2.3.	Copyright	
	2.4.	Document revision control	
3.	-	k reference	
4.		llation guide	
	4.1.	Mechanical drawing	
	4.2.	Mounting	
	4.3.	Connection	8
	4.4.	CAN termination	9
5.	Tech	nical data	9
6.	Func	tional description	10
	6.1.	Dynamic inclination measurement principle	10
	6.2.	Measuring axis and direction	11
	6.2.1	. Measuring axis and direction for Inclination	11
	6.2.2	. Measuring axis and direction for acceleration	12
	6.2.3	. Measuring axis and direction for gyroscope	12
	6.3.	Signal processing	13
	6.3.1	. Sampling rate	13
	6.3.2		
	6.3.3	. Digital filters	13
	6.4.	Function mode	14
	6.5.	Application profiles	15
	6.6.	Output format	16
	6.7.	Boot-up procedure	17
	6.8.	Emergency message	17
	6.9.	LSS (Layer Setting Service, according to CiA305-DSP)	18
	6.10.	Firmware management	
	6.11.	Load factory default settings	
		Zero adjustment	
	_	•	
	6.13.	EDS & DCF	
_	6.14.	Mappable objects	
7.		open specification	
	7.1.	CANopen Communication Objects (COB)	
	7.2.	Predefined CAN-IDs	
	7.3.	PDO (Reading sensor output)	24
	7.4.	SDO (configuring Object Dictionary)	24
	7.5.	NMT state	25
	7.6.	Object Dictionary (device parameters)	25
8.	CAN	Object dictionary overview	26
	8.1.	Communication profile (Index 1000h - 1FFFh)	
	8.1.1		
	8.1.2	·	
	8.1.3		
	8.1.4	. Object 1005h COB-ID SYNC message	29
	8.1.5	. Object 1006h Communication cycle period	29

User Manual - QG65D CANopen Dynamic Inclinometer (Type H) V2.3

	8.1.6.	Object 1010 _h Store parameters	30
	8.1.7.	Object 1011 _h Restore factory default parameters	30
	8.1.8.	Object 1014h COB-ID EMCY	31
	8.1.9.	Object 1020 _h verify configuration	31
	8.1.10.	Object 1029 _h error behaviour	31
	8.1.11.	Object 1800h, 1801h TPDO communication parameter	32
	8.1.12.	Object 1A00 _h , 1A01 _h TPDO Mapping parameter	32
	8.1.13.	Object 1F80h NMT start-up behaviour	33
	8.2. Ma	nufacturer-specific profile (2000h - 5FFFh)	34
	8.2.1.	Object 3004 _h Application profile	36
	8.2.2.	Object 3007 _h Function mode	36
	8.2.3.	Object 300Fh Zero adjustment Inclination	36
	8.2.4.	Object 301E _h Manufacturer status register error mask	37
	8.2.5.	Object 301Fh Manufacturer status register mapping	37
	8.2.6.	Object 3021 _h ~ 3027 _h User-adjustable parameters for application profile	38
	8.2.7.	Subindex 06h Output filter	38
	8.2.8.	Subindex 07 _h , 08 _h Moving average filter TPDO1 and TPDO2	38
	8.2.9.	Object 3032 _h Sub Range Limits	39
	8.3. App	olication profile (6000h – 9FFFh) (CiA410)	40
	8.3.1.	Object 6000 _h Resolution	41
	8.3.2.	Object 6011 _h , 6021 _h Operating parameter	41
	8.3.3.	Object 6012h, 6022h Pre-set inclination value	41
	8.3.4.	Object 6013 _h , 6023 _h Offset inclination value	41
	8.3.5.	Object 6401 _h Sensor outputs	42
	8.4. Dat	a type	42
9.	Configura	ation tool	43
	J	figuration kit	
		software	
		tions and definitions	
		ve references	
	. Nominativ	C TOTOLOGO	

1. Safety information

1.1. Intended use

The QG65D CANopen Dynamic Inclinometer is a MEMS-based inclination sensor with **CANopen** interface. This device provides precise and reliable inclination measurements in both static and dynamic conditions. The use of this device in a machine or system is permitted only under the following conditions:

- The user is trained and competent in integrating and using inclination sensors in machinery.
- The user is familiar with the contents of both the datasheet and user manual.
- The user has a full understanding of CAN and CANopen.
- The device is used within the specified environmental conditions.
- The device is properly configured for its intended use.
- The device is mounted correctly as described in the datasheet and user manual.
- The device data is expressly <u>not</u> interpreted as safety data, except when used redundantly in a control system that is designed and tested for cross-check functionality between the primary and redundant devices.

1.2. Incorrect use

- Use of non-standard CAN cables.
- Device mounted incorrectly.
- Zero adjustment outside the specified range.
- Incorrect or absent CAN bus termination.
- Device used outside the specifications.

1.3. Sensor defective

The sensor is considered "defective" when

- No CAN output can be detected.
- An emergency message with sensor error information is detected. (→ 6.8 Emergency message)

In the event of uncertainty, contact the distributor or manufacturer. Any unauthorised modification or unapproved use will void both the warranty and any liability on the part of the manufacturer.

2. About this manual

2.1. Intended use

This manual applies solely to the QG65D CANopen dynamic inclinometer (Type H) with the following model designations:

- QG65D-KIXv-360H-CAN-C(F)M-UL —— 1 axis, ± 180°, vertical mounting, high accuracy
- QG65D-KDXYh-090H-CAN-C(F)M-UL —— 2 axes, ± 90°, horizontal mounting, high accuracy
- QG65D-KDXYh-030H-CAN-C(F)M-UL —— 2 axes, ± 30°, horizontal mounting, high accuracy
- QG65D-KIXv-360-CAN-C(F)M-UL —— 1 axis, ± 180°, vertical mounting, std. accuracy
- QG65D-KDXYh-090-CAN-C(F)M-UL —— 2 axes, ± 90°, horizontal mounting, std. accuracy
- QG65D-KDXYh-030-CAN-C(F)M-UL —— 2 axes, ± 30°, horizontal mounting, std. accuracy

DIS product code can be identified here.

2.2. Symbols used in the text

- h Subscript for hexadecimal values.
- d Subscript for decimal values.

Caution that indicates either potential damage to the sensor or explains how to avoid a problem.

Important information.

→ Cross-reference

2.3. Copyright

© Copyright 2022 DIS Sensors bv.

This manual is subject to change without notice.

All rights according to the copyright remain explicitly reserved for DIS Sensors bv.

2.4. Document revision control

Versio	on Date(y-m-d)	Revision
V1.0	2020-11-27	1 st release.
V2.0	2021-7-2	Correct a few errors in 6.11 and 6.12.
		The picture of the configurator is updated.ac
		Extra description of the power adaptor convertor.
		Add E4 certification. Power supply description corrected.
		Object 1002 error description changed to "bit description" (8.1.2).
		add subindex 04 to object 1010 and 1011 (8.1.6, 8.1.7).
		add rotation speed to describe the application profile (6.5).
		add zero offset/value to Load default description (6.11).
		Added 6.14 and 8.3.1
		Added 2 missing error codes in 6.8
		Corrected objects sequence in mode 2. (Temperature as the
		1st object)
		Added message structure of object 1003h.
		Correct screen resolution of PC application.
		Correct command SYNC.
		Add std. accuracy model.
V2.1	2021-8-9	Configurator power adaptor is needed when more than 1
		sensor is connected.
V2.2	2021-11-5	Add DIS footer.
		Add measuring range acceleration.
		Improved the format.
		Correct a typo in 6.5 application profile
V2.3	2023-03-08	Resolution configurable
		Subrange is configurable for the 1-axis model.
		PC Application display resolution reduced to 1360x768p
		Improved description boot-up procedure

Table 1 - Document revision

3. Quick reference

General

- 1-axis ± 180° and 2-axes ± 30°/± 90° dynamic inclinometer
- · Output type: CANopen
- Inclination, acceleration, gyroscope outputs defined by Function modes (→ object 3007h)
- 4 application profiles for inclination measurement in specific applications (→ object 3004h)
- Sensor outputs can be customised using TPDO mapping parameters (→ object 1A00h)
- Internal sample rate MEMS: 1000Hz; output rate: 100 Hz
- Dynamic inclination application limitations: max. acceleration 1.5 g, max. angle rate 500°/s
- Output filter: adjustable 1st order LPF (→ sub-index 06_h of object 3021_h to 3024_h or object 300E_h)
- Moving average filter: averaging time interval adjustable from 10 ms to 100 ms (→ sub-index 07_h of object 3021_h to 3024_h or object 300D_h)
- An optional configurator is available.(→DIS website)
- Approved for automotive use, approval number: E4-10R-05-4662

CAN, CANopen

- CAN interface: CAN2.0 A/B (compliant with ISO11898-1&2)
- CANopen application layer and communication profile: EN50325-4 (CiA301 v4.0 and 4.2.0)
- CANopen device profile for inclinometer: CiA410
- LSS (Layer Setting Service) implemented
- TPDO1 (CAN-ID: 180_h + Node ID) and TPDO2 (CAN-ID: 280_h + Node ID)
- Outputs: inclination X-axis (longitudinal) in object 6010h; inclination Y-axis (lateral) in object 6020h
- Internal switchable CAN termination resistor: default off (→ object 3003_h)
- CAN bus bit rate: default 250 kbit/s (→ object 3001_h)
- Node ID: default 01_h (\rightarrow object 3000_h range: $01_h \sim 7F_h$, max. 127 nodes)
- Heartbeat: default on, 2 s (→ object 1017_h)
- Two modes of PDO transmission (→ <u>object 1800_h / 1801_h</u>)
 - Event mode: default on, event timer default 100 ms (range 10 ms ~ 500 ms)
 - Sync mode: default off
- Vendor ID: 000001BD_h DIS Sensors (→ <u>object 1018_h</u>)
- Firmware version available via CAN Object Dictionary (→ object 1018h)
- Serial number format: xxxxxx-xxx (→ object 1018_h)
- Zero adjustment of inclination available via CAN Object Dictionary (→ object 300F_h).
- Pre-set inclination setting available via CAN Object Dictionary (→ objects 6012_h and 6022_h).
- Bootup in NMT Operational state (→object 1F80h)
- Negative values: two's complement
- Byte-sequence on CAN bus: little-endian (least significant byte first)

4. Installation guide

4.1. Mechanical drawing

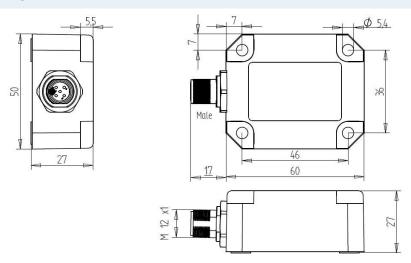


Figure 1 - Mechanical drawing of QG65D with a male M12.

4.2. Mounting

- Use the 4 screws provided (M5x25 mm zinc plated steel Pozidrive pan head screws with self-tapping PZ DIN7500CZ) to mount the device.
- If a software zero adjustment is impossible or undesirable, DIS provides an optional reference solution of replacing 2 of the provided screws with 2 optional 4mm Ø positioning pins, which can serve as a mechanical reference.
- Tightening torque max. 2.5 Nm. A higher torque can cause damage to the housing or the internal electronics.
- Fix the sensor to a perfectly flat surface.
- A 1-axis inclinometer must be mounted vertically. The factory default zero position is with the male connector pointing down as shown in Figure 3. The sensor can be zero adjusted at any position within the full range.
- A 2-axis inclinometer must be mounted horizontally. The factory default zero position is shown in Figure 2.
 After installation, the sensor can be zero adjusted to eliminate the mechanical offsets within a ±5° offset range.

Figure 2 - Horizontal mounting 2-axes inclination

Figure 3 - Vertical mounting 1-axis inclination

4.3. Connection

The sensor is equipped with either a single 5-pole M12 (A-coded) male connector according to IEC 61076-2-101, or with an additional 5-pole M12 (A-coded) female connector. This is specified in the suffix of the device model designation: suffix CM indicates a single male connector; suffix CFM indicates both a female and a male connector.

The advantage of two connectors is that devices can be daisy-chained in the CAN network. The voltage supply is forwarded from the male to the female connector, providing both power and bus connection to the next sensor with a single cable harness. The connection between male and female connectors acts as an internal T-junction.

The pin assignment is according to CiA 303-1 V1.8.0.

Pin	Assignment	
Pin 1	Shield	4 5 3 3 5 4
Pin 2	Vcc	
Pin 3	Gnd & CAN_GND	1 2 2 1
Pin 4	CAN_H	Male Female
Pin 5	CAN_L	

Figure 4 - Pin definition

- The maximum current for the internal T-junction is 2.5 A. This must be taken into account when using daisy-chained connections.
- The voltage supply must be dimensioned to prevent exceeding the specified voltage limits.
- The power consumption is about 50mA typical.
- This device must be connected to a class 2 power supply.
- Connect the sensor only to an approved CAN controller which must have a grounded shield. Alternative: connect the sensor housing to a grounded shield. All mentioned EMC standards that are met (see Declaration of Conformity) have been done with the housing connected to a grounded shield.

Installation of wiring and the opening and closing of electrical connections must only be carried out in a de-energized state! Short-circuits, voltage spikes, etc. can cause malfunctions and/or cause the installation to become uncontrolled, creating a serious risk of injury or damage to property.

4.4. CAN termination

A CAN bus should be terminated properly to prevent signal reflections. The QG65D CANopen dynamic Inclinometer has an internal 120 Ohm termination resistor. By default, this is disabled, but it can be enabled with <u>object 3003_h</u>.

A separate M12 termination resistor and T-connector are also available as accessories for CANopen devices.

Figure 6 - M12 CAN terminator female 5p.
Order code: 10194

Figure 7 - M12 T-connector 5p.
Order code: 11822

The advantage of using a separate termination plug instead of the internal termination resistor is that an external termination plug is clearly visible. This helps to prevent an inadvertent double termination that could cause the entire CAN bus to malfunction.

5. Technical data

Please refer to the datasheet of your product.

6. Functional description

6.1. Dynamic inclination measurement principle

Conventional inclinometers measure inclination by measuring g-forces using an accelerometer. In static conditions, inclination measurement by this principle is accurate and reliable. However, the vibrations or movements present on almost all industrial machines generate undesirable g-forces. These dynamic g-forces accumulate and overlay the static g-forces, causing a 'dirty' inclination output that includes spurious or noise components.

In certain applications, a low-pass filter can be used to stabilize the output. The downside of this filtering is that it significantly increases the inclinometer's reaction time (latency). In a control system, this results in a limit on the speed of movements, and reduced machine efficiency.

A gyroscope measures the speed of rotation, which can be integrated to get the actual inclination value. But gyroscopes are subject to bias drift, integrating constant bias will cause angular errors and these errors will accumulate over a long term. Therefore, this calculation is only accurate for a relatively short period.

The QG65D dynamic inclinometer combines accelerometer MEMS and gyro MEMS. This device is unaffected by vibration or movement, and can therefore measure the true angle at the sensor position in real-time. Our smart algorithms (such as Kalman filtering) within the device can determine the balance between the accelerometer MEMS (best result in static situations) and the gyro MEMS (best result in dynamic situations).

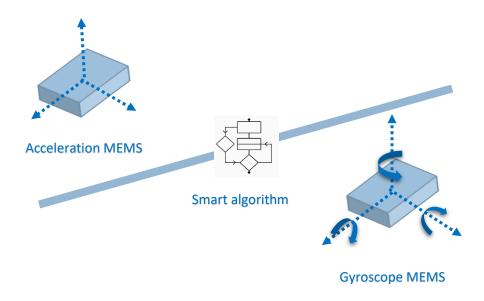


Figure 8 - Measurement principle of the dynamic inclinometer

6.2. Measuring axis and direction

6.2.1. Measuring axis and direction for Inclination

A single-axis inclinometer (vertical mount) measures the inclination in the vertical plane over the full range $\pm 180^{\circ}$ (or 0-360°) (X-output). The default 0° position and the measuring direction are shown in Figure 9 - Measuring axis and direction of 1-axis inclination.

Figure 9 - Measuring axis and direction of 1-axis inclination.

A dual-axis inclinometer (horizontal mount) measures the inclination on both X and Y axis. The measuring range is up to 90°. Due to the measurement principle, only one axis may tilt more than 45°.

Figure 10 – Measuring axis and direction of 2-axis inclination.

Cross-tilt error: when the cross axis (axis perpendicular to the measuring axis) tilts more than 45° during the measurement, the measuring axis will be disabled. The sensor will send a fixed CAN output to indicate that the sensor is now at a cross-tilt error position (\rightarrow Knowledgebase): 20000_d (200°) for the measuring range \pm 180°, \pm 30°/ \pm 90°, and 40000_d (400°) for the measuring range 0°-360°. In addition, an EMCY message will also be sent, in which the last 5 bytes (00 00 00 01/02_h) specifies the cross-tilt error on the X or Y axis (\rightarrow Object 1002h Manufacturer status register).

6.2.2. Measuring axis and direction for acceleration

In acceleration mode (\rightarrow 6.4 Function mode), the device measures the acceleration values on all 3 axes. The measuring direction of three axes in the factory default setting is shown in Figure 11.

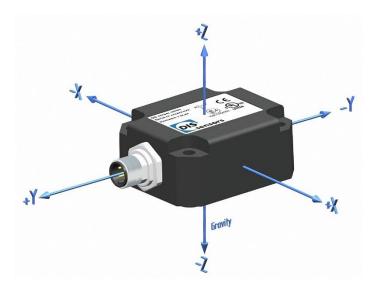


Figure 11 – Measuring axis and direction of acceleration

The high accuracy model has a measuring range of ± 1.5 g, while the standard accuracy model has ± 2 g.

6.2.3. Measuring axis and direction for gyroscope

In gyroscope mode (\rightarrow 6.4 Function mode), the sensor measures the angular rate on all 3 axes. The measuring direction of three axes in the factory default setting is shown in Figure 12.

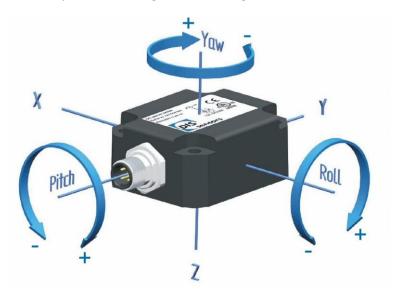
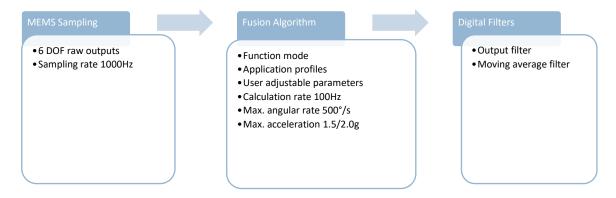



Figure 12 - Measuring axis and direction of the gyroscope

6.3. Signal processing

6.3.1. Sampling rate

Each axis of the acceleration and gyroscope MEMS is sampled by the internal microcontroller at a rate of 1000 Hz. Those samples are then processed and fed into the sensor fusion algorithm.

6.3.2. Sensor fusion algorithm

The sensor fusion algorithm transforms the raw MEMS outputs into a reliable inclination value. Based on the selected function mode, application profile, and user-adjustable parameters, the smart algorithm will combine the accelerometer and gyroscope outputs in a balanced way optimised for your application. The limitations for the sensor fusion algorithm are: acceleration max 1.5 g, angular rate max. 500°/s. The calculation rate, and therefore also the output rate, is 100 Hz.

6.3.3. Digital filters

To eliminate noise or reduce the bandwidth, the inclination values can be further processed with extra digital filters. In each application profile, those filters can be enabled and configured using the DIS QG65D configurator, or with the CAN object dictionary.

Output filter

A 1st order low-pass filter is implemented for the reduction of bandwidth and filtering noise. Each application profile has its own default filter settings, which can be set via subindex 06_h of CAN object 3021_h to 3024_h . Another way to control the filter settings for the currently active application profile is via object $300E_h$. The value you set with $300E_h$ will also be written to the corresponding object for that active application profile (object $3021_h \approx 3024_h$). The filter settings are effective on all sensing axes, but by default they are disabled.

By setting a time-constant τ (time in which the output changes to 70% of the step after a step response), the -3 dB frequency can be calculated by the formula $f = 1 / (2\pi^*\tau)$. A longer filter time results in a narrower bandwidth and therefore less noise but also causes a longer phase delay.

This -3 dB frequency is independent of TPDO event time. However, when the output filter time-constant is set to a value lower than the TPDO event time, the output filter is automatically disabled. For example, if TPDO event time is set to 100 ms, and output filter time is set to 50 ms, this filter will not work.

Moving average filter

The final inclination output is an average of the last N samples. The sampling rate of this filter is 10 ms. The various application profiles have different default filter settings. This filter can be controlled via CAN object 3021_h subindex 07_h to 3024_h subindex 07_h . It can also be controlled for the active application profile via CAN object 3000_h . In this case, the sensor will update the correct object of the active application profile (in the range 3021_h subindex 07_h to 3024_h subindex 07_h). The moving average filter is disabled in the factory default application profile 1.

The TPDO event timer decides the cycle time of the TPDO message. By default, the sensor sends a new TPDO every 100 ms. This TPDO message contains an inclination measurement which is an average of the preceding N x 10ms samples and is independent of the TPDO event time.

Example:

TPDO event timer = 50 ms, N = 7: every 50 ms, a new average inclination value from the previous 70 ms samples will be supplied in the TPDO message.

6.4. Function mode

The QG65D can measure inclination, acceleration and rotation. By selecting the function mode via <u>object 3007</u>_h, the sensor is configured to function as an inclinometer, accelerometer, gyroscope, or a fusion sensor. Once a function mode is selected, the TPDO mapping parameters (\rightarrow 8.1.12, page 32) are automatically configured with the predefined objects and object entries. The user can also define the TPDO mapping objects manually; the function mode is then changed to Mode FF_h (user defined mode).

Function mode	Output	TPDO mapping objects
Mode 0 (default)	Inclination (CiA410)	TPDO1: 6010_h - 00_h (1-axis model) TPDO1: 6010_h - 00_h , 6020_h - 00_h (2-axis model) TPDO2: disabled
Mode 1	Inclination (CiA410) alternative orientation	TPDO1: 6010_h - 00_h (1-axis model inverted) TPDO1: 6020_h - $00h$, $6010h$ - $00h$ (2-axis model with X and Y swapped, X and Y inverted) TPDO2: disabled
Mode 2	Inclination (CiA410) + Temperature	TPDO1: 6511_h - 00_h , 6010_h - 00_h (1-axis model) TPDO1: 6511_h - 00_h , 6010_h - 00_h , 6020_h - 00_h , (2-axis model) TPDO2: disabled
Mode 3	Acceleration (3 axes) (Pure acceleration without dynamic effects compensation)	TPDO1: 6401 _h - 01 _h , 6401 _h - 02 _h , 6401 _h - 03 _h TPDO2: disabled
Mode 4	Gyroscope (3 axes)	TPDO1: 6010 _h - 07 _h , 6010 _h - 08 _h , 6010 _h - 09 _h TPDO2: disabled
Mode 5	Mode 0 + Mode 3 + Mode 4 (Inclination + Acceleration + gyroscope)	TPDO1: 6010 _h - 00 _h , 6020 _h - 00 _h , 6401 _h - 01 _h , 6401 _h - 02 _h TPDO2: 6401 _h - 03 _h , 6401 _h - 07 _h , 6401 _h - 08 _h , 6401 _h - 09 _h
Mode FF	User defined mode (Output defined by the user)	TPDO1: user defined TPDO2: user defined

Table 2 – Sensor output configuration in different function modes.

6.5. Application profiles

The use of application profiles is the best practice for inclination measurement in various applications. Each profile has a unique combination of parameters that balance the processing between acceleration MEMS and gyroscope MEMS, to produce the best measurement quality for that application.

Four application profiles are provided that can be configured via <u>CAN object 3004h</u>. As they are intended to improve the inclination measurement, the profiles are only effective in a function mode where the inclination outputs are valid (mode 0, 1, 2, 5 and FF). For each profile, two parameters are available for optimisation of the outputs.

Application profile	Applications	User-adjus	table parameters	Default
Profile 0 Static	Non-dynamic applications (Gyroscope is disabled)	Object 3021	Output filter Moving average filter	100 ms 10
Profile 1 Dynamic (fast mode) (factory default)	Dynamic applications with moderate to fast movements/vibrations such as excavation, start/stop driving, rotation >10°/s rotation, etc.	Object 3022	Output filter Moving average filter	Oms = Disabled O = Disabled
Profile 2 Dynamic (slow mode)	Dynamic applications with slow movements/ vibrations such as cranes, platforms, scissor lifts, rotation <10°/s rotation, etc.	Object 3023	Output filter Moving average filter	50 ms 10
Profile 3 Dynamic (platform levelling)	Dynamic applications with minor movements/vibrations such as platform levelling, etc.	Object 3024	Output filter Moving average filter	100 ms 10

Table 3 - Application Profiles

User adjustable parameters	Function	Value
Output Filter (subindex 06 _h)	1st order LPF filter for all sensing axes. (→ 6.3.3 Digital filters)	Value range: $0_d \sim 10~000_d$ (ms) A longer filter time results in a smoother reaction on peaks/accelerations, but also a slower reaction to physical movements.
Moving average filter TPDO1, TPDO2 (subindex 07_h , 08_h)	Moving average filter for filtering noise. (→ 6.3.3 Digital filters)	N value range: $0_d \sim 10_d$ A greater N (number of samples) results in less noise and a smoother output, but also a slower reaction to physical movements.

Table 4 – User adjustable parameters for application profiles.

The user adjustable parameters can be fine-tuned for the existing application profiles via $\underline{\text{CAN object } 3021_h} \approx 3024_h$, while objects $3025_h \approx 3027_h$ are reserved for future profiles.

These parameters are also easily adjusted in the configuration panel of the QG65D configurator (Figure 13).

Application profile

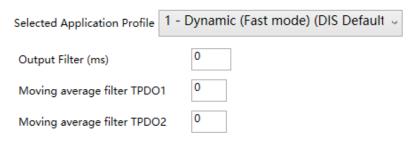
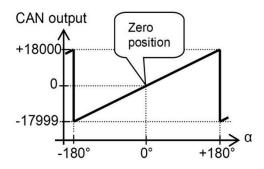


Figure 13 - Application profile in the configuration panel



6.6. Output format

Inclination output format with factory default resolution: CAN output = $100*\alpha$. (α = angle in degrees, factory resolution is 0.01°). The resolution can be configured with object 6000_h . CAN outputs are sent with PDOs (\rightarrow 7.3 PDO (Reading sensor output).

For example:

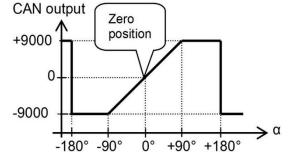


Figure 14 - Output 1-axis ±180° sensor

Figure 15 - Output 2-axis ±90° sensor

In Figure 14, the sensor sends 1 axis inclination output with 2 Bytes Integer (Table 5).

Byte1	Byte0	
23 _h	82 _h	
Inclination output: $2382_h = 9090_d = 90.9^\circ$		

Table 5 - Output 1-axis ±180° sensor

In Figure 15, the sensor sends 2 axis inclination outputs with 4 bytes integer. The 1^{st} two bytes are the X inclination and the 2^{nd} two bytes are the Y inclination (Table 6).

Byte3	Byte2	Byte1	Byte0
Y incl	ination	X incli	nation
00 _h	82 _h	0B _h	C8 _h
0080 _h = 130 _d = 1.3°		0BC8 _h = 301	L6 _d = 30.16°

Table 6 - TPDO1 of QG65D-KDXYh-090H-CAN-C(F)M

Besides inclination values, the device also provides acceleration, angular rate and device temperature.

The acceleration output contains acceleration of all three axes. "High accuracy" model has a measuring range of $\pm 1,5g$ and $\pm 10Hz$ as -3dB cut-off frequency, while "Standard accuracy" model has a measuring range of $\pm 2g$ and $\pm 50Hz$ instead. The raw acceleration output has a resolution of 1mg, while the dynamic compensated acceleration has a resolution of $\pm 10Hz$ of $\pm 10Hz$ as a resolution of $\pm 10Hz$ and $\pm 10Hz$ as a resolution of $\pm 10Hz$ as a resolution of $\pm 10Hz$ and $\pm 10Hz$ as a resolution of $\pm 10Hz$ as a resolution of $\pm 10Hz$ and $\pm 10Hz$ as a resolution of $\pm 10Hz$ and $\pm 10Hz$ as a resolution of $\pm 10Hz$ and $\pm 10Hz$

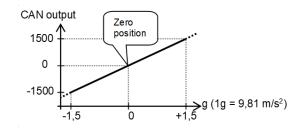


Figure 16 - Raw acceleration output

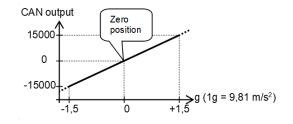


Figure 17 - Dynamic compensated acceleration output

The user can customise the device outputs by changing the TPDO mapping parameters. (\rightarrow Object 1A00_h, 1A01_h TPDO Mapping parameter).

For example, 1st two bytes are the device temperature, the 2nd two bytes are the inclination output (Table 7).

Byte3	Byte2	Byte1	Byte0
23 _h	82 _h	00 _h	1A _h
Inclination output: 2382 _h = 9090 _d = 90.9°		Device temp	erature: 001A _h = 26 _d °C

Table 7 - Customised TPDO message

6.7. Boot-up procedure

When the device is powered on, it automatically enters NMT Initialisation state. In this state, the device will be initialised with the last stored parameters of the manufacturer-specific profile area and of the standardized device profile area. When initialisation is complete, a bootup message 00_h will be sent with the heartbeat (700_h + Node ID). If an error is detected during the bootup, an emergency message with the error information will be sent.

After that, the sensor will switch to either "Operational" (default) or "Pre-operational" mode, depending on the value of object 1F80_h.

6.8. Emergency message

When the device detects an internal error, an emergency object (80_h +Node ID) with an 8-bytes message is transmitted. The error code is inserted at the location of <u>object 1003h (pre-defined error field)</u>, and the device enters the error state which is defined in Object 1029_h Error Behaviour (default: NMT pre-operational state).

The first 3 bytes indicate error code specified in CiA301 and the error register specified in $\frac{\text{Object }1001_h}{\text{Dobject }1002_h}$. The remaining 5 bytes indicate the manufacturer-specific error specified in $\frac{\text{Object }1002_h}{\text{Dobject }1002_h}$.

Byte7 Byte6 Byte5 Byte4 Byte3	Byte2	Byte1 Byte0
Manufacturer-specific error (1002 _h)	Error register (1001 _h)	EMCY error code (CiA301)
00 00 00 00 00 _h = no error	00 _h = no error	00 00 _h = No error. Always sent at start-up
00 00 00 00 01 _h = X-axis Cross-Tilt Error	01 _h = Generic error	10 xx _h = Generic error
00 00 00 00 02 _h = Y axis Cross-Tilt Error	05 _h = Voltage error	50 00 _h = Voltage error
00 00 00 00 08 _h = EEPROM error	81 _h = Manufacturer specific error	50 10 _h = Self-test error
More:	More:	50 30 _h = Error during sensor initialization
→ 8.1.2 Object 1002h Manufacturer status register	→ 8.1.1 Object 1001h Error register	60 00 _h = Watchdog error
,		60 00 _h = Error handler activated
		62 00 _h = Device software error
		80 00 _h = Sent at every change of the
		manufacturer status register
		81 xx _h = CANopen stack message
		82 xx _h = CANopen stack message
		FF 20 _h = EEPROM error

Table 8 - format EMCY message

Examples:

 $\underline{00\ 00\ 00\ 01\ 05\ 50\ 00_h}$ – Voltage error detected during initialization

 $\underline{00\ 00\ 00\ 00\ 01}\ \underline{81}\ \underline{80\ 00_h}\ - Cross-tilt\ error\ on\ X\ axis$

When all errors are corrected, the device enters the error-free state and transmits an emergency object with the error code 'reset error / no error' containing all 0 s.

6.9. LSS (Layer Setting Service, according to CiA305-DSP)

Layer setting services (LSS) and protocols are used to request or change the settings of three parameters of the physical layer, data link layer, and application layer on a CANopen device via the CAN network. It is supported only in NMT stop mode or pre-operational mode.

The QG65D device is serviced as a CAN device, and a CAN master such as a PLC can detect and configure those three parameters with LSS:

- Node ID (→object 3000_h)
- CAN bus bit rate (→object 3001h)
- LSS address: 128-bit number to identify each node uniquely, consisting of the vendor ID, product code, revision number, and serial number with 32 bits each (→object 1018h)

After changing parameters using LSS, a save action must be performed. Normally your LSS tool can be configured to perform an automatic save (store), as shown below:



Figure 18 - LSS save action.

6.10. Firmware management

If a firmware version is mentioned on the label, it is the factory-installed firmware number.

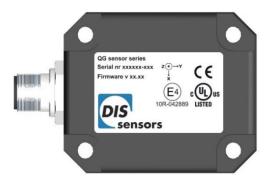


Figure 19 - Firmware version

It can also be requested with object 100A_h Manufacturer software version. The message format is "Vx.x.x" in ASCII, for example: V1.0.0.

The currently-installed firmware version might vary from the version on the sticker due to a firmware update. Always check the actual version in the object dictionary.

It will soon be possible to update the firmware via the DIS configuration tool. This tool can check the current firmware version in your device and upload the new firmware to the device. The user can upload the new firmware to the device by simply clicking a button (Figure 20).

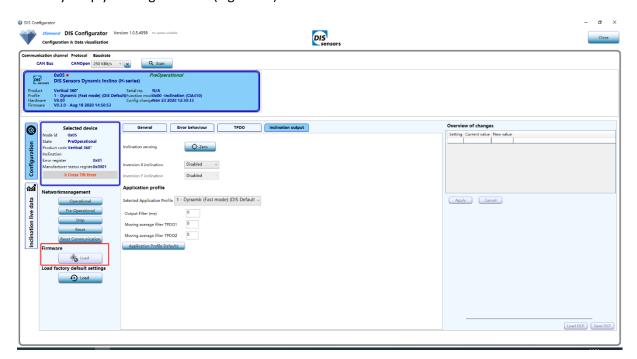


Figure 20 - Firmware update via configurator

The firmware release notes are available at www.dis-sensors.com under "downloads/user manuals".

6.11. Load factory default settings

Factory reset or load factory default settings allows users to restore the device to its original manufacturer settings. The customer settings which were saved to the EEPROM will be overwritten by the factory default settings.

With <u>object 1011</u>_h, the factory default settings below can be restored. Customised products may have different factory default values, which may deviate from this manual. See the datasheet of your customized products for these customized factory default values.

DIS factory default - communication parameters

Parameters	Object	DIS standard default value
COB-ID SYNC	1005h	0000080h
Communication Cycle Period	1006 _h	00 _h
COB-ID EMCY	1014 _h	0000081h
Producer heartbeat time	1017 _h	2000 _d = 2000 ms
Error behaviour	1029 _h	00h = Switch to pre-operational
NMT Start-up behaviour	1F80h	00000000 _h = Start in operational
Node ID	3000h	01 _h
Baud Rate	3001 _h	03 _h = 250 kBit/s
Termination resistor	3003h	00h = Disabled
Error masks	301Eh	80001D40h

Table 9 – DIS standard factory default communication parameters

DIS factory default - application parameters

Parameters	Object	DIS standard default value
Application Profile	3004 _h	01 _h = Profile1: Dynamic (fast mode)
Function mode	3007 _h	00 _h = Inclination (CiA 410)
Moving Average filtering	3022 _h sub 07 _h and 300D _h	00 _h = Moving Average filtering OFF
Output Filter time	3022 _h sub 06 _h and 300E _h	00 _h = Output filter OFF
Operating parameters	6011 _h , 6021 _h	02 _h = DIS default measuring direction Pre-set enabled
Pre-set inclination value (Zero value)	6012 _h , 6022 _h	00 _h
Offset inclination value (Zero offset)	6013 _h , 6023 _h	Zero offset by calibration at the factory. Various per sensor
Sub range limit	3032 _h	00 _h = Disabled

Table 10 – DIS standard factory default application parameters.

6.12. Zero adjustment

Zero adjustment allows users to compensate for mechanical offsets of a horizontally mounted 2-axis device or set a customised 0° position of a vertically mounted 1-axis sensor. The measured inclination value at the 0° position will be stored in the device as a permanent offset, which is used to calculate the actual inclination output of the device. The zero offset value can be read from \rightarrow Object 6013_h, 6023_h Offset inclination value. (page 41)

Zero adjustment can be done in 2 ways and can be repeated at any time.

1. Via → Object 300Fh Zero adjustment.

The zero adjustment can be done for each axis separately or for all axes at the same time. Status information of the result is available from object 300Fh. The offset value will be stored permanently in the device without "save" to object 1010_h.

2. Via → Object 6012h, 6022h Pre-set inclination value.

To set the output of X/Y axis to 0°, write 0000_h to object 6012_h / 6022_h at your desired 0° position. The offset will be stored in Object 6013_h , 6023_h Offset inclination value. Those parameters must be saved to the device (\rightarrow 8.1.6 Object 1010_h Store parameters.)

1-axis $\pm 180^{\circ}$ sensors can be zero adjusted over the full range, the position of the male connector is at customer discretion. 2-axis $\pm 30^{\circ}/\pm 90^{\circ}$ sensors can only be zero adjusted in a horizontal position within an offset limit of $\pm 5^{\circ}$.

After you load factory default settings, the sensor will be restored with the factory zero offset, which means the pre-set inclination value will be restored to 00_h , object 6013_h and 6023_h will be rewritten to a factory default value and you need to zero your sensor again.

6.13. EDS & DCF

The "Electronic Data Sheet" (EDS file) is a file format that describes the communication behaviour and the object dictionary entries of a device. It is a template. This allows tools such as CAN configuration tools to handle the device properly. The file format is described in CiA306 V1.3.0.

The EDS file contains all possible settings and functions for the device by describing the CAN object dictionary for the device to be set by CAN commands.

The EDS file does not contain a customer-specific configuration description (the values of the object dictionary, such as the chosen baud rate, TPDO1 event time, Node ID, etc.). For this purpose, the customer can generate a DCF file (Device Configuration File) with all customer-specific settings in the same format as the EDS file. The DCF file is an emulation of the EDS file.

After loading the DCF file into the device, the settings can be stored permanently in the EEPROM. (\rightarrow 8.1.6 Object 1010_h Store parameters)

The EDS files are available at www.dis-sensors.com under "downloads".

6.14. Mappable objects

Objects that can be mapped into the TPDO message.

Index	Subindex	Туре	Object name and description
1001 _h	00 _h	U8	Error register 00h = No error 81h = Error detected
1002 _h	00 _h	U8	Manufacturer status register
1013 _h	00 _h	U32	High Resolution Timestamp
301F _h			Manufacturer status register mapping
	00 _h	U8	Highest subindex supported
	01 _h	U8	Manufacturer Status Register bits 0 - 7
	02 _h	U8	Manufacturer Status Register bits 8 - 15
	03 _h	U8	Manufacturer Status Register bits 16 - 23
	04 _h	U8	Manufacturer Status Register bits 24 - 31
6010 _h	00 _h	S16	Inclination X-axis (longitudinal) Output X-axis. Inclination [°] with the resolution in object 6000 _{hse}
6020 _h	00 _h	S16	Inclination Y-axis (lateral) Output Y axis. Inclination [°] with the resolution in object 6000h
6401 _h			Sensor Outputs
	00 _h	U8	Highest subindex supported
	01 _h	S16	X acceleration [1mg]
	02 _h	S16	Y acceleration [1mg]
	03 _h	S16	Z acceleration [1mg]
	04 _h	S16	X inclination scale ±180° [0.01°]
	05 _h	S16	Y inclination scale ±180° [0.01°]
	06 _h	S16	Reserved
	07 _h	S16	X rotation [0.01°/s]
	08 _h	S16	Y rotation [0.01°/s]
	09 _h	S16	Z rotation [0.01°/s]]
	0A _h	S16	Temperature [0.1 °C]
	0B _h	S16	X acceleration dynamic compensated [0.1 mg]
	0C _h	S16	Y acceleration dynamic compensated [0.1 mg]
	0D _h	S16	Z acceleration dynamic compensated [0.1 mg]
	0E _h	U16	X inclination scale 0°-360° [0.01°]
	0F _h	U16	Y inclination scale 0°-360° [0.01°]
6511 _h	00 _h	S16	Device Temperature [1°C]

Table 11 - Mappable objects

7. CANopen specification

The QG65D series of devices commun with the CANopen interface according to CiA 301. The device profile CiA 410 is implemented. All parameters and measured values can be accessed by the Object dictionary. More knowledge of CANopen sensors can be found in our <u>Knowledgebase</u>.

7.1. CANopen Communication Objects (COB)

A CANopen device contains a communication module that provides communication objects and the appropriate functionality to transport data items via the underlying network structure. In other words: objects that you send or receive from the device for different communication purposes.

The communication objects are described by the services and protocols. Objects we often use:

Common COBs	Description
SDO	Service Data Object provides direct access to object entries of a CANopen device's object dictionary
PDO	Process Data Object is used to transfer real-time data
NMT	Network Management object is used to execute network management services to initialize, monitor, restart or stop the sensor
SYNC	Synchronization object provides the basic network synchronization mechanism
EMCY	Emergency object is used to indicate internal errors
Heartbeat	Heartbeat is produced by the device to indicate its status. It is one of the error control services in CANopen.
LSS	Layer Setting Service (LSS) enables the LSS master to modify the LSS slaves' node-ID and to switch the entire network from one data rate to another.

Table 12 – Common communication objects

7.2. Predefined CAN-IDs

Every CAN message on the bus starts with a CAN-ID. A CAN device that uses 11-bit identifiers is commonly called CAN 2.0 A and a CAN device that uses 29-bit identifiers is commonly called CAN 2.0B. For CANopen sensors, DIS Sensors implements an 11-bit CAN-ID which consists of a 4-bit function code and 7-bit Node ID.

Examples:

Object SYNC has function code 0001b, resulting CAN-ID 000,1000,0000b=080h.

Object TPDO1 has function code 0011b, resulting CAN-ID 001,1000,0000b=180h.

CiA has pre-defined CAN-IDs for common CAN objects as below:

CAN objects	CAN-ID
NMT	000h
SYNC	080h
Emergency	080 _h + Node ID
TPDO1	180 _h + Node ID
TPDO2	280 _h + Node ID
SDO tx (server -> client)	580 _h + Node ID
SDO rx (client -> server)	600 _h + Node ID
Heartbeat	700 _h + Node ID

Table 13 - Predefined CAN-ID of common objects.

7.3. PDO (Reading sensor output)

The Process Data Object (PDO) is used to process real time data. The measured values such as inclination, temperature, etc. are sent with TPDOs. PDOs are transmitted in the NMT operational state only and may be transmitted when a mapped process data item changes.

A DIS device supports 2 TPDOs. In factory default mode, TPDO1 sends the sensor output, TPDO2 is disabled. The communication parameters of TPDOs can be configured with $\frac{\text{object } 1800_h \text{ and } 1801_h}{\text{object } 1800_h \text{ and } 1801_h}$. The data transmitted with TPDOs can be configured with TPDO mapping parameters $\frac{\text{object } 1800_h \text{ and } 1801_h}{\text{object } 1800_h \text{ and } 1801_h}$.

7.4. SDO (configuring Object Dictionary)

The Service Data Object (SDO) is used to set and request values from the object dictionary. There are three types of SDO services used to transmit data. In this context, the device is considered as a server (owner of the object dictionary) and communication is viewed from the server.

SDO Services	Description	SDO Request (600 _h + Node ID)	SDO Response (580 _h + Node ID)
SDO upload	Read from device Server -> Client	40 _h = Expedited Read	43_h = Read reply 4 bytes 47_h = Read reply 4 bytes $4B_h$ = Read reply 4 bytes $4F_h$ = Read reply 4 bytes
SDO download	Write to device Client -> Server	23 _h = Expedited Write, 4 Bytes 27 _h = Expedited Write, 3 Bytes 2B _h = Expedited Write, 2 Bytes 2F _h = Expedited Write, 1 Byte	60 _h = Write Reply
SDO abort transfer	Indicates error		80 _h = Error/Abort code

Table 14 - Expedited SDO transfer command specifier

<u>Common SDOs</u> to configure sensors and <u>SDO abort codes</u> can be found in the <u>knowledge base</u>.

7.5. NMT state

CANopen devices are initialized, started, monitored, reset or stopped using NMT services. The NMT state of the device can be set by applications such as PLC software. Table 15 shows the communication objects that exist in each NMT state.

NMT State	PDO	SDO	SYNC	EMCY	Heartbeat	Description
Pre-operational	×	√	√	√	√ 7F _h	Configuration mode: PDOs do not exist. This is the recommended mode for configuration of PDOs.
Operational	√	√	√	√	√ 05 _h	Take care with configuration in this mode, as some objects are protected and may not be changed in this mode.
Stopped	×	×	×	*	✓ 04 _h	All communication is forced to stop except the heartbeat/node guarding.
Bootup	×	×	×	*	✓ 00 _h	Device is initialised with default power-on values

Table 15 – NMT states and communication objects

7.6. Object Dictionary (device parameters)

The object dictionary is a collection of data items that influence the behaviour of the application objects, the communication objects, and the state machine used on this device. Each object is addressed using a 16-bit index and an 8-bit subindex.

Index Range	Object	Description
1000 _h ~ 1FFF _h	Communication profile area	Parameters for communication such as SDO, PDO, NMT, etc.
2000 _h ~ 5FFF _h	Manufacturer-specific profile area	Parameters for device-specific features such as function mode, etc.
6000h ~ 9FFFh	Application profile area	Parameters that are common for inclinometers.
Other	Reserved for factory use	Do not use

Table 16 - Structure of object dictionary

All parameters in the object dictionary can be accessed with SDOs.

See also 8. CAN Object dictionary overview.

8. CAN Object dictionary overview

8.1. Communication profile (Index 1000_h - 1FFF_h)

Index	Subindex	Data Type	Access	Object Name and description	Factory Default	Detail
1000 _h	00 _h	U32	r	Device type (QG65D complies with device profile CiA410)	0101019Ah = 1-axis inclination 0102019Ah = 2-axis inclination	
1001 _h	00 _h	U8	r	Error register 00h = No error 81h = Error detected	00h	8.1.1
1002 _h 1003 _h	00 _h	U8	r	Manufacturer status register Predefined error filed	00000000 _h = No error	8.1.2
	00 _h	U32		Number of errors. Range: 00 _h to FE _h	00h	8.1.3
	01hFEh	U32	r	Error Code	NA	
1005h	00 h	U32	rw	COB-ID SYNC	0000080h	8.1.4
1006h	00 h	U32	r	Communication cycle period	00000000h = No SYNC transmission	8.1.5
1008 h	00h	VSTR	const	Manufacturer device name	"DIS Sensors QGxxD CANopen (High acc.)" "DIS Sensors QGxxD CANopen (Std. acc.)"	
1009h	00 h	VSTR	const	Manufacturer hardware version	Depends on the sensor. e.g. "V8.00"	
100Ah	00 h	VSTR	const	Manufacturer software version	Depends on the sensor. e.g. "V1.0.0"	
1010 _h				Store parameters	Write "save" or "65766173 $_{h}$ " to subindex 01 $_{h}$ to 04 $_{h}$	8.1.6
	00h	U8	const	highest subindex supported	04h	
	01 h	U32	rw	Save all parameters		
	02h	U32	rw	Save communication parameters.		
	03 h	U32	rw	Save application parameters		
1011 h	04h	U32	rw	Save manufacturer-specific parameters Restore default parameters	Write "load"or "64616F6C _h " to subindex	017
IUIIn				·	01h to 04h	0.1.7
	00h	U8	const	Highest subindex supported	04h	
	01 h	U32	rw	Restore all parameters		
	02 h	U32	rw	Restore communication parameters		
	03 h	U32	rw	Restore application parameters		
	04 _h	U32	rw	Restore manufacturer specific parameters		
1013h	00h	U32	rw	High Resolution Timestamp	00 _h	
1014h	00h	U32	rw	COB-ID EMCY	00000081h (80h + Node ID)	8.1.8
1017h	00h	U16	rw	Producer heartbeat time	7D0h = 2000 ms	
1018h				Identity object		
	00 h	U8	const	Highest subindex supported	04h	
	01 h	U32	r	Vendor ID	000001BDh	
	02 h	U32	r	Product code	08000001h = 1-axis inclination 360 08000002h = 2-axes inclination ±90 08000003h = 2-axes inclination ±30	
	03 h	U32	r	Revision number	00010000h = V1.0.0	
	04h	U32	r	Serial number	e.g. 77542822 _h = 2002004-002 _d	
1020h	U III	552		Verify configuration	G. 773	8.1.9
1020n	00h	U8	const	Highest subindex supported	02h	0.1.3
	01 _h	U32	rw	Configuration date	number of whole days since 1-1-1984	
				<u> </u>		
1029h	02 h	U32	rw	Configuration time Error behaviour	number of ms since midnight	8.1.10
102311	22				03	5.1.10
	00h 01h	U8 U8	const rw	Highest subindex supported Communication error $00h = switches to pre-operational$ $01h = does not change state$ $02h = switches to stopped$	02h 00h	

User Manual - QG65D CANopen Dynamic Inclinometer (Type H) V2.3

Index	Subindex	Data Type	Access	Object Name and description	Factory Default	Detail
				03h FFh = reserved		
	02h	U8	rw	Profile- or manufacturer-specific error 00h = switches to pre-operational 01h = does not change state 02h = switches to stopped 03h FFh = reserved	00h	
1800h				TPDO1 communication parameter		8.1.11
	00h	U8	const	Highest subindex supported	05h	
	01 h	U32	rw	COB-ID used by TPDO1 40000181 _h = TPDO1 enabled C0000181 _h = TPDO1 disabled	40000181h (CAN-ID of TPDO1: 180 _h + Node ID)	
	02 h	U8	rw	Transmission type FFh = event-driven 01h = sync	FFh	
	03 h	U16	rw	Inhibit time	0000h	
	05 h	U16	rw	Event timer	0064h = TPDO1 event time 100 ms	
1801h				TPDO2 communication parameter		8.1.11
	00 h	U8	const	Highest subindex supported	05h	
	01 h	U32	rw	COB-ID used by TPDO2 40000281 _h = TPDO2 enabled C0000281 _h = TPDO2 disabled	C0000281h (CAN-ID of TPDO2: 280 _h + Node ID)	
	02 h	U8	rw	Transmission type FFh = event-driven 01h = sync	FFh	
	03h	U16	rw	Inhibit time	0000h	
	05h	U16	rw	Event timer	0064h = TPDO2 event time 100 ms	
1A00h				TPDO1 mapping parameter		8.1.12
	00 h	U8	rw	Number of mapped application objects in TPDO	$01h = 1 \text{ axis } \pm 180^{\circ}$ $02h = 2 \text{ axes } \pm 30^{\circ}/\pm 90^{\circ}$	
	01 h	U32	rw	Mapping object1	60100010h	
	02 h	U32	rw	Mapping object2	60200010h	
	03 h	U32	rw	Mapping object3	0000000h	
	04 h	U32	rw	Mapping object4	0000000h	
1A01h				TPDO2 mapping parameter		8.1.12
	00 h	U8	rw	Number of mapped application objects in TPDO	00h = Disabled	
	01 h	U32	rw	Mapping object1	64010110 _h	
	02 h	U32	rw	Mapping object2	64010210 _h	
	03h	U32	rw	Mapping object3	64010310 _h	
	04 h	U32	rw	Mapping object4	0000000h	
1F80h	00 h	U32	rw	NMT Start-up behaviour 00000004h: start in state pre-operational 00000000h: start in state operational	0000000h	8.1.13

Table 17 - Communication Profile

To permanently save communication parameters in the EEPROM of the device, use only CAN Object 1010h, otherwise, the changes will be lost after a power cycle. All indices and/or subindices not described in the table are reserved exclusively for factory use.

8.1.1. Object 1001h Error register

This object indicates the type of detected error. This is a part of the EMCY message (\rightarrow 6.8 Emergency message).

Bit	Error type	Example
0	Generic error	00 _h - No error
		(This bit is set to 1 whenever another error bit is set)
1	Current	03 _h
2	Voltage	05 _h
3	Temperature	09 _h
4	Communication error	11 _h
5	Device profile specific	21 _h
6	Reserved, always 0	
7	Manufacturer-specific	81 _h - Manufacturer error detected

Table 18 – Error register

8.1.2. Object 1002h Manufacturer status register

This object defines the manufacturer error codes. Each bit represents a specific type of error. When an error is detected, the bit will be set to 1. This is a part of the EMCY message (\rightarrow 6.8 Emergency message).

Bit	Error
Bit 0	Inclination X axis (longitudinal) cross tilt error
Bit 1	Inclination Y axis (lateral) cross tilt error
Bit 2	Inclination X axis (longitudinal) out of range indication
Bit 3	Inclination Y axis (lateral) out of range indication
Bit 4	Temperature Under operational limit (e.g. T < -40°C, specified in the datasheet.)
Bit 5	Temperature Over operational limit (e.g. T > +85°C, specified in the datasheet.)
Bit 6	Actual power error (e.g. supply voltage too low)
Bit 7	Power error since the last reset (memorized)
Bit 8	EEPROM Error
Bit 9	Flash Error
Bit 10	Sensor element Error
Bit 11	Watchdog Error
Bit 12	Error handler activated Error
Bit 13-31	Unused Error bits

Table 19 - Manufacturer error code

The error code can be mapped into the TPDO message via $\frac{\text{Object } 301F_h}{\text{E.g.}}$. E.g. (2 axis 90° model)

Error code (Byte 3-7)	Error description
00 00 00 01	When Y tilts > ±45°, X axis is disabled, bit 0 is set to 1.
00 00 00 02	When X tilts > ±45°, Y axis is disabled, bit 1 is set to 1.
00 00 00 06	When X tilts> ±90°, X is out of range and Y axis is disabled due to cross tilt error,
(0110)	bit 2 and bit 1 both set to 1.
00 00 00 09	When Y tilts >±90°, Y is out of range and the X axis is disabled due to cross tilt
(1001)	error, bit 3 and bit 0 both set to 1.
00 00 00 0C	When X and Y both tilts >±90°, bit 2 and bit 3 are set to 1.
(1100)	

Table 20 - Example manufacturer error code

8.1.3. Object 1003h Predefined error field

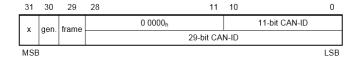
This object provides an error history of the device. The error codes are saved in the subindex starting with 01h. The most recent error is always shown on the top. These error codes are transmitted with the emergency object.

- Subindex 00h indicates the number of existing errors that are recorded in the array starting at subindex 01h.
- If an error is detected, the error code will be stored in subindex 01h and higher. The same error code will also be sent via the emergency object. In doing so it provides an error history.

Subindex	Description	Value
00 _h	Number of errors detected	No error: 00h
01 _h	The latest error code	See 6.8 Emergency message
02 _h 10 _h	Oldest error - highest subindex A maximum of 16 errors (emergency messages) are stored.	

Table 21 - Predefined error field

Writing 00h to subindex 00h will delete the entire error history.


The error message in object 1003 is not the full EMCY message, it contains only the error code and the manufacturer-specific error.

Byte3	Byte2	Byte1	Byte0
Manufacturer-specific error (1002 _h)		Error Code (CiA30	1)
Byte1 Byte0		Byte1	Byte0

Table 22 - message structure 1003h

8.1.4. Object 1005h COB-ID SYNC message

The structure of the COB-ID of SYNC object is specified as below:

QG65D series devices are configured with a default COB-ID of 00000080h, which means:

- 11-bit CAN-ID is valid by default
- CAN-ID of SYNC is 080h

8.1.5. Object 1006h Communication cycle period

This object defines the SYNC interval. The value must be supplied as a multiple of μ s. If the value is set to 0000 0000h the transmission of SYNC messages will be disabled.

8.1.6. Object 1010_h Store parameters

Use this object to save the customised settings such as Node ID, baud rate, etc. to the internal EEPROM. Users can store parameters in both NMT operational and pre-operational state.

Procedures:

- Write "save" to sub-index 01h = All parameters will be stored.
- Write "save" to sub-index 02h = Parameters of communication profile (Index 1000_h 1FFF_h) will be stored.
- Write "save" to sub-index 03h = Parameters of application profile (Index 6000 h 9FFF h) will be stored.
- Write "save" to sub-index 04h = Parameters of manufacturer-specific profile (Index 2000_h 5FFF_h) will be stored.
- Write "save" in ASCII or "65766173h" have the same effect.

lpha An NMT request or a new power cycle is required to enable the stored settings.

8.1.7. Object 1011h Restore factory default parameters

Use this object to restore the factory default values for the parameters of the communication profile, device profile and application profile. The factory default values of standard DIS devices are specified in Table 9, Table 10 and the object dictionary overview tables. Customised devices may have different factory default values, which may deviate from this manual. See the datasheet of your customized product for these customized factory default values. You can restore the factory default in both NMT operational and pre-operational state.

Procedures:

- Write "load" to sub-index 01h = All parameters will be restored.
- Write "load" to sub-index 02h = Parameters of communication profile (Index 1000h 1FFFh) will be restored.
- Write "load" to sub-index 03h = Parameters of application profile (Index 6000 h 9FFF h) will be restored.
- Write "load" to sub-index 04h = Parameters of manufacturer-specific profile (Index 2000h 5FFFh) will be restored.
- Write "load" in ASCII or "64616F6Ch" have the same effect.

A direct NMT restart or new power cycle is required to enable the factory default settings after a "load". Do not execute "save" before you restart the device, as this will cause the current working environment settings to overwrite (i.e. store) the default factory settings (see 8.1.6 above).

8.1.8. Object 1014h COB-ID EMCY

This object configures the COB-ID for the EMCY write service. The factory default COB-ID of EMCY is 00000081_h, which indicates:

- EMCY exists (bit31=0)
- 11-bit CAN-ID is valid
- CAN-ID of EMCY is 81_h (default: 80_h + Node ID 01_h)

It is not recommended to change the CAN-ID of EMCY to a different value.

8.1.9. Object 1020h verify configuration

This object provides the downloaded configuration date and time. It is used by configuration tools to compare the current device configuration date with their DCF files and determine whether reconfiguration is necessary.

8.1.10. Object 1029h error behaviour

This object configures the device to enter the selected NMT state when a serious failure is detected. By default, subindex 01h and 02h are both preconfigured with the default value of 00h, which means the device shall autonomously enter pre-operational state.

Subindex	Error type	Error behaviour
01h	Communication error	00 _h = Change to NMT state pre-operational (only if currently in NMT state Operational)
02h	Profile- or manufacturer-specific error	O1 _h = No change of the NMT state O2 _h = Change to NMT state Stopped O3 _h FF _h = reserved

Table 23 - Object 1029h error behaviour

Failures include the following communication errors:

- Bus-off state of the CAN interface
- Life guarding event with the state 'occurred' and the reason 'time out'
- Heartbeat event with state 'occurred' and the reason 'time out"
- Device internal failures

8.1.11. Object 1800h, 1801h TPDO communication parameter

The QG65D series device supports 2 TPDOs: object 1800h configures the communication parameters of TPDO1; object 1801h configures those of TPDO2.

Subindex	Description	Value
01h	Defines the COB-ID of TPDO Default CAN-ID of TPDO1 = 180h + Node ID. Default CAN-ID of TPDO2 = 280h + Node ID.	4000181_h = Enable TPDO1 C000181 _h = Disable TPDO1
02h	TPDO transmission type Synchronous: TPDO is transmitted after the SYNC Event-driven: TPDO is transmitted at any time based on the occurrence of an internal event.	01_h = synchronous FF_h = event-driven (default)
03h	Inhibit time	0000 _h = Disabled
05h	Event timer defines the interval of TPDO. The value is defined as multiple of 1 ms.	0064_h = TPDO1 event time 100 ms 0000_h = Disabled.

Table 24 - TPDO communication parameter

8.1.12. Object 1A00h, 1A01h TPDO Mapping parameter

Object 1A00_h contains the mapping parameters for TPDO1.

Object 1A01_h contains the mapping parameters for TPDO2.

The value indicates the index, subindex of the mapped object, and the data length.

For example, with factory default settings:

- TPDO1 mapping parameter of a 1-axis ±180° inclinometer is configured as in Table 25
- TPDO1 mapping parameter of a 2-axis ±30°/±90° inclinometer is configured as in Table 26
- TPDO2 mapping is disabled by default.

1A00h	TPDO1 mapping parameter	Object descri	ption
00 h	Number of mapped application objects in TPDO1	01 h	TPDO1 consists of values from only 1 object.
01 h	Mapping object1	60100010 _h	Index: 6010 _h , subindex: 00 _h , data length: 10 _h =16bits.
			Inclination X-axis (longitudinal)

Table 25 – Default mapping parameters of TPDO1 1-axis ±180°

1A00 h	TPDO1 mapping parameter	Object description		
00 h	Number of mapped application objects		TPDO1 consists of values from 2 objects.	
01 h	Mapping object1	60100010 _h	Index: 6010_h , subindex: 00_h , data length: 10_h =16bits. Inclination X-axis (longitudinal)	
01 h	Mapping object1	60200010 _h	Index: 6020 _h , subindex: 00 _h , data length: 10 _h =16bits. Inclination Y-axis (lateral)	

Table 26 – Default mapping parameters of TPDO1 2-axis ±30°/±90°

TPDO mapping procedure

The following procedure must be used for re-mapping, which may take place during either of the NMT states Preoperational and Operational.

Step	Description	Value example
1	Disable TPDO	1800 _h .01 _h = C0000181 _h 1801 _h .01 _h = C0000281 _h
2	Disable TPDO mapping	$1A00_h.00_h = 00_h$ $1A01_h.00_h = 00_h$
3	Modify mapping by changing the values of the corresponding subindices.	$1A00_h.01_h = 60100010_h$ $1A00_h.02_h = 60200010_h$ $1A01_h.01_h = 64011010_h$
4	Enable mapping by setting subindex 00h to the number mapped objects.	$1A00_h.00_h = 02_h$ $1A01_h.00_h = 01_h$
5	Enable TPDO	1800 _h .01 _h = 40000181 _h 1801 _h .01 _h = 40000281 _h

Table 27 – Procedure for configuring TPDO mapping parameters

The TPDO mapping parameters vary according to the user-selected Function Mode.

8.1.13. Object 1F80h NMT start-up behaviour

This object configures the NMT start-up state. In the factory default configuration, the device enters NMT Operational state after it passes all internal tests. In this state, device output will be sent with TPDO1, and a heartbeat with valthe ue " 05_h " will be sent indicating that the sensor is now in an "Operational" state. To have the device start instead in the "Pre-operational" state, write " 00000004_h " to this object.

Value	Description
00000000h	Start in state Operational (default setting for DIS devices)
00000004h	Start in state Pre-operational

Table 28 - NMT start-up state configuration

8.2. Manufacturer-specific profile (2000h - 5FFFh)

Index	Subindex	Data type	Access	Object name and description	Factory default	Detail
3000 _h	00 _h	U8	rw	Node ID (Range: 01 _h - 7F _h)	01 _h	
3001 _h	00 _h	U8	rw	Baud Rate $00_h = 1000 \text{ kBit/s}$ $01_h = 800 \text{ kBit/s}$ $02_h = 500 \text{ kBit/s}$ $03_h = 250 \text{ kBit/s}$ $04_h = 125 \text{ kBit/s}$ $05_h = 100 \text{ kBit/s}$ $05_h = 200 \text{ kBit/s}$ $05_h = 100 \text{ kBit/s}$	03 _h	
3003 _h	00 _h	U8	rw	CAN bus termination resistor 120 Ω 00h: Disable 01h: Enable	00 _h	4.4
3004 _h	00 _h	U8	rw	Application Profile 00_h = Profile0 01_h = Profile1 02_h = Profile2 03_h = Profile3 04_h = Profile4 (future use) 05_h = Profile5 (future use) 06_h = Profile6 (future use)	01 _h	8.2.1
3007 _h	00 _h	U8	rw rw rw rw rw	Function Mode 00_h = Mode 0 01_h = Mode 1 02_h = Mode 2 03_h = Mode 3 04_h = Mode 4 05_h = Mode 5 FF _h = Mode FF (user defined mode)	00_h	8.2.2
300D _h				Moving average filter		6.3.3
	00 _h	U8	r	Highest subindex supported		
	01 _h	U8	rw	Moving average number N for TPDO 1	00 _h	
	02 _h	U8	rw	Moving average number N for TPDO 2	00 _h	
300E _h	00 _h	U16	rw	Output filter	00 _h	6.3.3
300F _h	00 _h	U8	rw	Zero adjustment Inclination 01 _h Start zero adjustment X-axis 02 _h Start zero adjustment Y-axis 03 _h Start zero adjustment X and Y axis	00 _n	8.2.3
301E _h	00 _h	U32	rw	Manufacturer status register error mask mask which bits will trigger the manufacturer-specific error behaviour.		8.2.4
301F _h				Manufacturer status register mapping		8.2.5
	00 _h	U8	r	Highest subindex supported		
	01 _h	U8	r	Manufacturer Status Register bits 0 - 7		
	02 _h	U8	r	Manufacturer Status Register bits 8 - 15		
	03 _h	U8	r	Manufacturer Status Register bits 16 - 23		
	04 _h	U8	r	Manufacturer Status Register bits 24 - 31		

User Manual - QG65D CANopen Dynamic Inclinometer (Type H) V2.3

Index	Subindex	Data type	Access	Object name and description	Factory default	Detail
3021 _h				Parameters for application profile 0		8.2.6
	00 _h	U8	r	Highest subindex supported	08 _h	
	01 _h - 05 _h	S8	rw	Reserved	00_{h}	
	06 _h	U16	rw	Output filter	$64_{h}/100_{d}$	8.2.7
	07 _h	U8	rw	Moving average filter TPDO1	10 _d	8.2.8
	08 _h	U8	rw	Moving average filter TPDO2	00 _h	
3022 _h				Parameters for Application Profile 1		
	00 _h	U8	r	Highest subindex supported	08 _h	
	01 _h - 05 _h	S8	rw	Reserved	00 _h	
	06 _h	U16	rw	Output filter	00 _h	8.2.7
	07 _h	U8	rw	Moving average filter TPDO1	00 _h	8.2.8
	08 _h	U8	rw	Moving average filter TPDO2	00 _h	
3023 _h				Parameters for Application Profile 2		
	00 _h	U8	r	Highest subindex supported	08 _h	
	01 _h - 05 _h	S8	rw	Reserved	00 _h	
	06 _h	U16	rw	Output filter	32 _h / 50 _d	8.2.7
	07 _h	U8	rw	Moving average filter TPDO1	0A _h / 10 _d	8.2.8
	08 _h	U8	rw	Moving average filter TPDO2	O _d	
3024 _h				Parameters for Application Profile 3	,	
.,,	00 _h	U8	r	Highest subindex supported	08 _h	
	01 _h - 05 _h	S8	rw	Reserved	0 _d	
	06 _h	U16	rw	Output filter	100 _d	8.2.7
	07 _h	U8	rw	Moving average filter TPDO1	10 _d	8.2.8
	08 _h	U8	rw	Moving average filter TPDO2	0 _d	0.2.0
3025 _h				Parameters for Application Profile 4 (reserved)	- u	
3023 _n	00	U8			00	
	00 _h		r	Highest subindex supported	08 _h	
	01 _h - 08 _h	S8	rw	Reserved	O_d	
3026 _h				Parameters for Application Profile 5 (reserved)		
	00 _h	U8	r	Highest subindex supported	08h	
	01 _h - 08 _h	S8	rw	Reserved	0_d	
3027 _h				Parameters for Application Profile 6 (reserved)		
	00 _h	U8	r	Highest subindex supported	08h	
	01 _h - 08 _h	S8	rw	Reserved	0_d	
3028 _h				Parameters for Application Profile 7(reserved)		
	00 _h	U8	r	Highest subindex supported	08h	
	01 _h - 08 _h	S8	rw	Reserved	00 _h	
				Sub Range Limits		8.2.9
3032 _h						_
3032 _h	00 _h	U8	r	Highest subindex supported		
3032 _h	00 _h 01 _h	U8 S16	r r	Highest subindex supported Lower Sub Range Limit	00 _h	

Table 29 – Application-specific profile

To permanently save application-specific parameters in the EEPROM of the device, use only CAN Object 1010h, otherwise, the changes will be lost after a power cycle. All indices and/or subindices not described in the table are reserved exclusively for factory use.

8.2.1. Object 3004h Application profile

Use object index 3004_h, subindex 00_h, to select an application profile (\rightarrow 6.5 Application profiles). Configure useradjustable parameters via objects 3021_h ~ 3027_h.

Value	Profile			
00 _h	Profile 0 = Static			
01 _h	Profile 1 = Dynamic (fast mode) >10°/s rotations (factory default)			
02 _h	Profile 2 = Dynamic (slow mode) <10°/s rotations			
03 _h	Profile 3 = Dynamic (platform levelling)			
04h - 06h	Profile 4 ~ 6 = Reserved for future use			

Table 30 - Object 3004h Application profile

8.2.2. Object 3007h Function mode

Use this object to select a function mode (\rightarrow 6.4. Function mode).

Access	Value	Function Mode	Description	
Rw	00h	Mode 0	Inclination (CiA410)	
Rw	01 _h	Mode 1	Inclination (CiA410) alternative orientation	
			(X and Y swapped, X and Y inverted)	
Rw	02 _h	Mode 2	Inclination (CiA410) + Temperature	
Rw	03 _h	Mode 3	Acceleration (3 axes)	
			(Pure acceleration without dynamic effects compensation)	
Rw	04 _h	Mode 4	Gyroscope (3 axes)	
Rw	05 _h	Mode 5	Mode 0 + Mode 3 + Mode 4	
			(Inclination + Acceleration + gyroscope)	
R	FFh	Mode FF	User defined mode	
			(Output defined by the user)	

Table 31 - Object 3007h 00h -function mode

8.2.3. Object 300Fh Zero adjustment Inclination

To perform a zero adjustment, write the corresponding value to subindex 00_h (\rightarrow 6.12 Zero adjustment).

Write to 300	DF _h 00 _h	Response by reading 300F _h 00 _h
01 _h	Start zero adjustment X-axis - inclination	00 _h = Successful; FF _h = Failed
02 _h	Start zero adjustment Y axis - inclination	00 _h = Successful; FE _h = Failed
03 _h	Start zero adjustment X and Y axis - inclination	00 _h = Successful; FD _h = Failed

Table 32 – Object 300F_h entries description

8.2.4. Object 301Eh Manufacturer status register error mask

Use the error mask to select the error bit in object 1002_h that triggers the manufacturer-specific error behaviour. Set this bit to 1 to trigger the error behaviour, or 0 to ignore the error.

Bit	Error		
0	Inclination X axis (Longitudinal) Cross Tilt Error		
1	Inclination Y axis (Lateral) Cross Tilt Error		
2	Inclination X axis (Longitudinal) Out of Range indication		
3	Inclination Y axis (Lateral) Out of Range indication		
4	Temperature under operational Limit (e.g. T < -40°C, specified in the datasheet.)		
5	Temperature over operational Limit (e.g. T > +85°C, specified in the datasheet.)		
6	Actual power error (e.g. Supply voltage too low)		
7	Power error since the last reset (memorized)		
8	EEPROM error		
9	Flash error		
10	Sensor element error		
11	Watchdog error		
12	Error handler activated error		
13 ~ 30	Unused error bits		
31	ON/OFF sending of EMCY message '0x8000 Monitoring' at every change of the manufacturer status register bits.		

Table 33 - object 1002h Error bit

The factory default value is 80001D40_h (100000000000000001110101000000_b), which includes following errors:

- Bit 6: Actual power error.
- Bit 8: EEPROM error
- Bit 10: Sensor element error
- Bit 11: Watchdog error
- Bit 12: Error handler activated error
- Bit 31: Send EMCY message

The error behaviour is set via \rightarrow Object 1029_h error behaviour.

8.2.5. Object 301Fh Manufacturer status register mapping

Use object 301F_h to map the manufacturer error code (\rightarrow 8.1.2 Object 1002_h Manufacturer status register) into the TPDO messages.

Subindex	Manufacturer status register mapping
00 _h	Highest subindex supported
01 _h	Manufacturer status register bits 0 - 7
02 _h	Manufacturer status register bits 8 - 15
03 _h	Manufacturer status register bits 16 - 23
04 _h Manufacturer status register bits 2	

Table 34 – Manufacturer status register mapping object

For example, to get the first 8 bits of the manufacturer error code in the TPDO output set the TPDO1 mapping parameters to $301F0108_h$ (\rightarrow Object $1A00_h$, $1A01_h$ TPDO Mapping parameter).

8.2.6. Object 3021h ~ 3027h User-adjustable parameters for application profile

In each application profile, a group of parameters is used to improve the measurement of inclination values. Currently, only 3 parameters are implemented, and other subindices are reserved for future use (\rightarrow 6.5 Application profiles).

Object	Description
3021 _h	Parameters for application profile 0
3022 _h	Parameters for application profile 1
3023 _h	Parameters for application profile 2
3024 _h	Parameters for application profile 3
3025-3028 h	Reserved for future profiles.

Subindex	Parameter name	Data type	Value range
01 _h - 05 _h	Reserved	S8	
06 _h	Output filter	U16	0 _d ~ 10000 _d
07 _h	Moving average filter TPDO1	U8	0 _d ~ 10 _d
08 _h	Moving average filter TPDO2	U8	0 _d ~ 10 _d

Table 35 - Parameters for application profile

8.2.7. Subindex 06h Output filter

Use subindex 06_h of objects 3021_h = 3027_h to set the filter time τ for a 1st order LPF for all sensing axes in a specific application profile (\rightarrow 6.3.3 Digital filters). Use object $300E_h$ if you also wish to set this filter for the active application profile.

The cut-off frequency is calculated using this formula: $\mathbf{F}_{-3 \text{ dB}} = 1/2\pi\tau$.

 τ is the time constant with a value range of 0ms (off) ~ 10000 ms. E.g. 64_h = 100_{ms}

8.2.8. Subindex 07_h, 08_h Moving average filter TPDO1 and TPDO2

Use subindex 07_h and 08_h of objects $3021_h \sim 3027_h$ to set the average number N for the moving average filter for the TPDOs in a specific application profile (\rightarrow 6.3.3 Digital filters).

Use object 300D_h if you also wish to set this filter for the currently active application profile.

Value Range	Description
00 _h	Moving average filter disabled (factory default)
01 _h	Moving average filter disabled.
02 _h = 0A _h	Output is averaged with the last 20 ms = 100 ms samples.

Table 36 – moving average filter TPDO

8.2.9. Object 3032h Sub Range Limits

Use this object to change the measuring range of the sensor.

Subindex	Name	Value
01 _h	Lower Sub Range Limit	00_h = sub range disabled (default) -6000 _d = -60°
02 _h	Upper Sub Range Limit	00_h = sub range disabled (default) + 6000_d = + 60°

e.g. Lower sub range limit = -6000_d , Upper sub range limit = $+6000_d$ will set the measuring range to -60° to $+60^\circ$.

8.3. Application profile (6000h ~ 9FFFh) (CiA410)

Index	Subindex	Data Type	Acces	sObject name and description	Factory default	Detail
6000 _h	00 _h	U16	r/w	Resolution 10 _d =0.01, 100 _d =0.1, 1000 _d =1.0	10 _d	8.3.1
6010 _h	00 _h	S16	r	Inclination X-axis (longitudinal) Output X-axis. Inclination [°] with the resolution in object 6000h	No	
6011 _h	00 _h	U8	rw	Operating parameter for Inclination X-axis (longitudinal) bit0 = 1: inverted; 0: normal bit1 = 1: pre-set value included; 0: pre-set value excluded.	02 _h	8.3.2
6012 _h	00 _h	S16	rw	Pre-set Inclination X-axis	0000 _h	8.3.3
6013 _h	00 _h	S16	rw	Offset Inclination X-axis	0000 _h	8.3.4
6020 _h	00 _h	S16	r	Inclination Y-axis (lateral) Output Y axis. Inclination [°] with the resolution in object 6000 _h	No	
6021 _h	00 _h	U8	rw	Operating parameter for Inclination Y-axis (lateral) bit0 inversion = 1: inverted; 0: normal bit1 scaling = 1: enable; 0: disable	02 _h	8.3.2
6022 _h	00 _h	S16	rw	Pre-set Inclination Y-axis	0000 _h	8.3.3
6023 _h	00 _h	S16	rw	Offset Inclination Y-axis	0000h	8.3.4
6401 _h				Sensor Outputs		8.3.5
	00 _h	U8	r	Highest subindex supported	0Fh	
	01 _h	S16	r	X acceleration scale ±1500 / ±2000 [1 mg]		
	02 _h	S16	r	Y acceleration scale ±1500 / ±2000 [1 mg]		
	03 _h	S16	r	Z acceleration scale ±1500 / ±2000 [1 mg]		
	04 _h	S16	r	X inclination scale ±180° [0.01°]		
	05 _h	S16	r	Y inclination scale ±180° [0.01°]		
	06 _h	S16	r	Reserved		
	07 _h	S16	r	X rotation [0.01°/s]		
	08 _h	S16	r	Y rotation [0.01°/s]		
	09 _h	S16	r	Z rotation [0.01°/s]]		
	0A _h	S16	r	Temperature [0.1 °C]	Realtime e.g. 251h	
	0B _h	S16	r	X acceleration dynamic compensated scale ±15000 / ±20000 [0.1 mg]		
	0C _h	S16	r	Y acceleration dynamic compensated [0.1 mg] scale ±15000 / ±20000 [0.1 mg]		
	0D _h	S16	r	Z acceleration dynamic compensated [0.1 mg] scale ±15000 / ±20000 [0.1 mg]		
	0E _h	U16	r	X inclination scale 0°-360° [0.01°]		
	0F _h	U16	r	Reserved		
6511 _h	00 _h	S16	r	Device Temperature [1°C]	No	

Table 37 - Standardized device profile

To permanently save application-specific parameters permanent in the EEPROM of the device, use only CAN Object 1010h, otherwise, the changes will be lost after a power cycle.

8.3.1. Object 6000h Resolution

The resolution of the inclinometer can be configured with object 6000h. The QG65D inclinometer has a default resolution of 0.01°.

8.3.2. Object 6011h, 6021h Operating parameter

Use the operating parameter to set the +/- direction of measurement, and whether the pre-set value should be calculated.

Index	Subindex	Value			
6011 _h	00h	Bit 0	Inversion	0	Disable (DIS default)
6021 _h				1	Enable (inverted)
		Bit 1	Pre-set	0	Disable
				1	Enable

Table 38 - Operating parameter

If Pre-set is enabled, the actual output will be calculated with the pre-set value in Object 6012_h and 6022_h. (see below).

If Pre-set is disabled, the actual output is the unscaled physically measured inclination value.

8.3.3. Object 6012h, 6022h Pre-set inclination value

Use these objects to store pre-set inclination values for the X and Y axis at a certain position, with the resolution given in object 6000_{h} . The outputs will be then adjusted to the stored pre-set value. The offset is stored in Object 6013_{h} , 6023_{h} Offset inclination value. They will be restored 00_{h} after you Load the default setting.

Index	Value	Example
6012 _h	Pre-set inclination X-axis	0000 _d - 0°
6022 _h	Pre-set inclination Y axis	0100 _d - 1°

Table 39 - Object 6012_h/6022_h Pre-set inclination value

 ${f 10}$ 2-axis $\pm 30^{\circ}/\pm 90^{\circ}$ sensors can only be pre-set in a horizontal position within an offset limit of $\pm 5^{\circ}$.

8.3.4. Object 6013h, 6023h Offset inclination value

These objects store the offset inclination values for the X and Y axis after the pre-set is done. They will be restored to the offset value by the zero calibration at the factory after you Load the default setting.

Index	Value	Example
6013 _h	Pre-set inclination X-axis	-9007 _d (1-axis Sensor pre-set at -90.07° position)
6023 _h	Pre-set inclination Y axis	+0200 _d (2-axis Sensor pre-set at Y=+2.00° position)

Table 40 - Object 6013h/6023h Offset inclination value

8.3.5. Object 6401h Sensor outputs

Various types of outputs are stored in object 6401_h . These values can be mapped into TPDOs ($\rightarrow 8.1.12$ Object $1A00_h$, $1A01_h$ TPDO Mapping parameter).

Subin	idex	Output Types	Description
00 _h	U8	Highest subindex supported	OF _h
01 _h	S16	X acceleration	Acceleration value without dynamic effects compensation.
02 _h	S16	Y acceleration	[resolution 1 mg]
03 _h	S16	Z acceleration	Scale (high accuracy series): ±1500 Scale (std. accuracy series): ±2000
04 _h	S16	X inclination scale ±180° [0.01°]	Same as 6010.00
05 _h	S16	Y inclination scale ±180° [0.01°]	Same as 6020.00 (For 2-axis sensor only)
06 _h	S16	Reserved	
07 _h	S16	X rotation (Roll) [0.01°/s]	Angular rate from gyro MEMS on a scale of -327 °/s to +327 °/s,
08 _h	S16	Y rotation (Pitch) [0.01°/s]	with clipping outside this range.
09 _h	S16	Z rotation (Yaw) [0.01°/s]]	
0A _h	S16	Temperature [0.1 °C]	Temperature measured by internal MEMS sensing element.
0B _h	S16	X acceleration dynamic compensated	Acceleration value with dynamic effects compensation.
0C _h	S16	Y acceleration dynamic compensated	[resolution 0.1 mg]
0D _h	S16	Z acceleration dynamic compensated	Scale (high accuracy series): ±15000 Scale (std. accuracy series): ±20000
0E _h	U16	X inclination scale 0°-360° [0.01°]	X inclination output on a scale of 0° to 360° (0 - 36000). (For 1-axis sensor only)
0F _h	U16	Reserved	

Table 41 – Sensor outputs

8.4. Data type

Data types used in the application layers are explained in the following table.

Data type	Definitions
U8	Unsigned 8-bit number (0 ~ 255₄)
U16	Unsigned 16-bit number (0 ~ 65535₀)
U32	Unsigned 32-bit number (0 ~ 4294967295 _d)
S8/Integer 8	Signed integer 8-bit number (-128 _d ~ +127 _d)
S16/Integer 16	Signed integer 16-bit number (-32768 _d ~ +32767 _d)
S32/Integer 32	Signed integer 16-bit number (-2147483648 _d ~ +2147483647 _d)
VSTR	Visible String

Table 42 - Data type

9. Configuration tool

The QG65D CANopen dynamic Inclinometer can be easily configured using the configuration tool developed by DIS Sensors. The tool also displays live data from the sensor. The configuration tool consists of a configuration kit and PC software. The configuration kit can be ordered separately, and the software can be downloaded from our website.

The minimum display resolution for the PC application is 1360x768p.

9.1. Configuration kit

The QG65D CANopen configuration kit comprises:

- Item 1: USB-CAN dongle. (Peak USB-CAN IPEH Interface adaptor)
- Item 2: CAN power box with power adapter connection.
- Item 3: 0.3 m CAN cable for connecting the sensor.
- Item 4: Power adaptor. (Figure 22)

(the power adaptor is an EU adaptor, users in other regions might need a converter which is not included.)

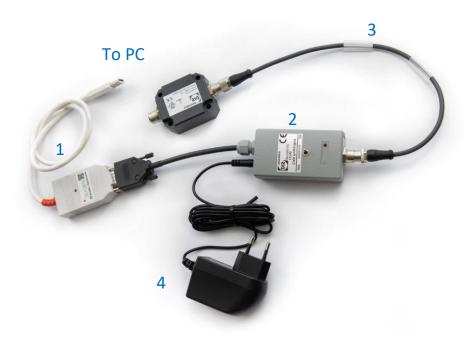


Figure 21 - Connection of QG65D configurator

The USB-CAN dongle (item 1) provides communication between the USB and CAN interface. Note that DIS has modified the Peak USB-CAN IPEH Interface adaptor to forward a 5 V power supply to the CAN power box (item 2). If a standard (unmodified) Peak USB-CAN adaptor is used, the included power adaptor (item 4) must be used.

The CAN power box (item 2) provides the voltage supply to the sensor devices. When only 1 sensor is connected, it can be powered via the USB-CAN dongle (item 1) by the 5 V USB power. If more than 1 sensor is connected, then the power adapter (item 4) must be used instead. This power adapter can support up to 32 dynamic Inclinometers from DIS Sensors.

Figure 22 - Power Adapter for the CAN power box

The CAN power box is also equipped with a switch to control the internal CANbus termination resistor within the CAN power box. The label clearly shows "on" and "off".

Figure 23 - CAN power box

Two LEDs on the CAN power box indicate the power status. The green LED (connection indication) will be lit when it is connected correctly to the PC. The red LED (current overload indication) will be lit when the USB port is overloaded (max. 250 mA) to protect your PC or laptop. If you use the power adapter to supply the CAN power box, then the internal power supply and the current overload protection are disabled.

If the CAN configurator is not used 'stand-alone' (i.e. only configurator + DIS sensor) but is connected to a powered CANbus system, then this CANbus system must be powered with Vcc > 20 V dc. Otherwise, the USB / DIS configurator will have to supply power to the entire CAN system chain, which can potentially harm the PC and connected items.

The QG65D configuration kit will supply 18Vdc on Vcc and Gnd to the connected CAN systems/CAN sensors. Connecting sensors from other brands could potentially harm the equipment.

The configuration tool can be loaned on request free of charge for pilot testing.

The QG65D configuration kit may be used in an ambient temperature range of +10 °C to +50 °C without a power adapter, or 0 °C to +40 °C with a power adaptor.

9.2. PC software

The PC software and a detailed manual can be downloaded from the DIS website free of charge. The software provides a portal for both sensor configuration and live data monitoring. The description in this chapter is based on the first released version. The changes will only be updated in the separate manual for the configurator, which you can also download from the DIS website.

Key features:

• **Sensor detection.** Click , the software will scan the CAN bus and find the connected sensors. Basic information such as product name, serial number, etc. will be shown in Figure 24.

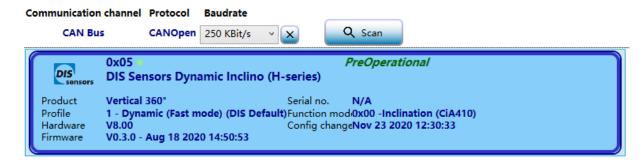


Figure 24 - Sensor detection

Click on the displayed sensor to show a detailed configuration panel.

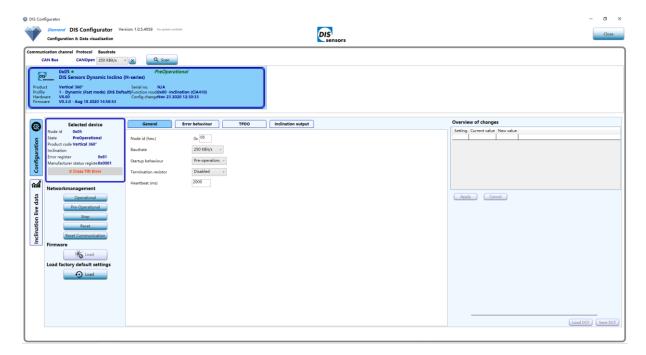
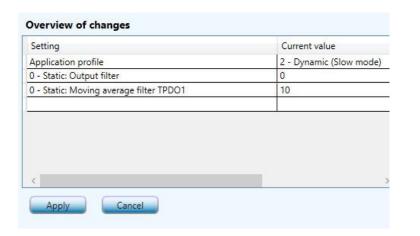



Figure 25 - Configuration panel

• The configurator keeps track of all changes you have made. Click the Apply button to save the changes to the sensor device. This can take a little time, after which the new settings will take effect.

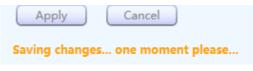


Figure 26 - Saving the changes

Figure 27 - Overview of changes

• General configuration, Error behaviour, TPDO parameters and parameters for inclination output can easily be configured here.

Figure 28 - General configuration

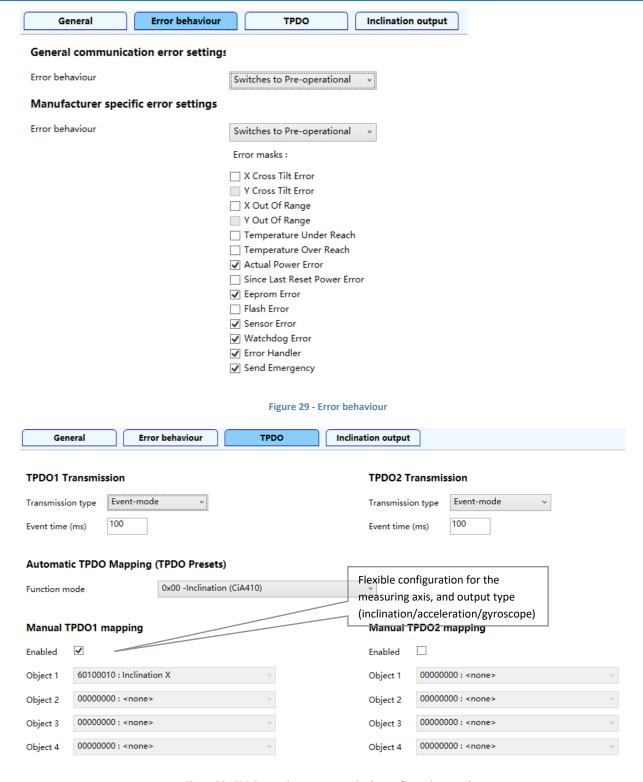


Figure 30 - TPDO mapping parameters in the configuration panel

The PC software supports all TPDO mapping options, including 0-360° output. This output can therefore be used by a pilot customer, as 0-360° values are transferred in the TPDO message. Device profile inclinations $\pm 30^\circ$, $\pm 90^\circ$, and $\pm 180^\circ$ are visible only in the live data tab.

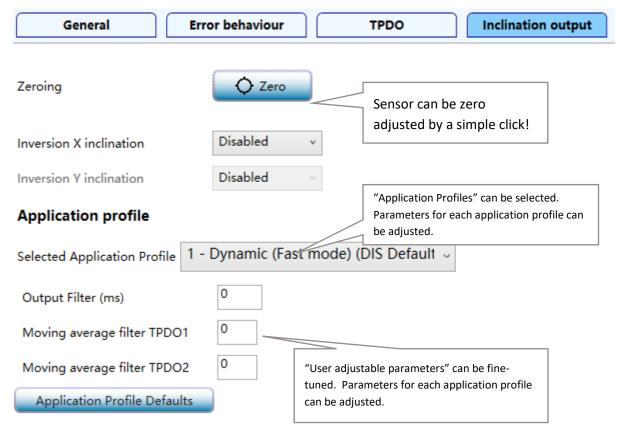


Figure 31 - Application profiles in the configuration panel

• The "Live data" tab shows the real-time sensor outputs. The chart can also be c as an image.

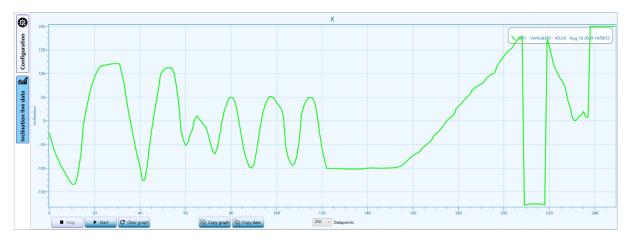


Figure 32 - Live data

• Future versions of this software will support the upgrading of the firmware.

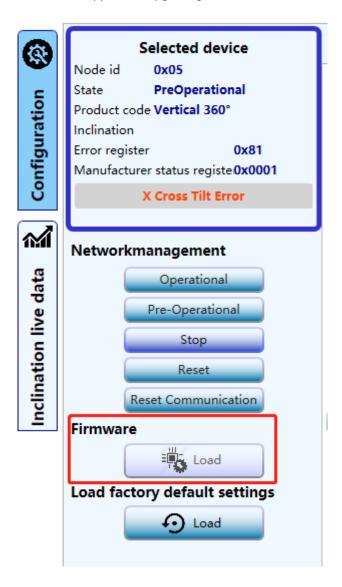


Figure 33 - Firmware update

10. Abbreviations and definitions

CAN	Controller area network
CAN-ID	CAN identifier
СОВ	Communication object
COB-ID	COB identifier
CRC	Cyclic redundancy check
CiA	CAN in Automation
DOF	Degrees of freedom
EDS	Electronic data sheet
EMCY	Emergency
GYRO	Gyroscope
LPF	Low-Pass Filter
MEMS	Microelectromechanical system
NMT	Network Management
PDO	Process Data Object
SDO	Service Data Object
SYNC	Synchronization
TPDO	Transmit PDO

11. Normative references

CiA301	CANopen application layer and communication profile. Version: 4.2.0
CiA303-1	Cabling and connector pin assignment. Part 1: Cabling and connector pin assignment. Version: 1.9.0
CiA305-DSP	Layer setting services (LSS) and protocols, draft standard proposal
CiA306	Electronic data sheet specification for CANopen V1.3.0
CiA410	Device profile for inclinometer. Version: 1.3.0
IEC 61076-2-101	Connectors for electronic equipment - Part 2-101: Circular connectors — Detail specification for circular connectors M8 with screw- or snap-locking, M12 with screw locking for low voltage applications

